Data-driven design of embedding observers using automatic differentiation

被引:0
|
作者
Fiedler, Julius [1 ]
Gerbet, Daniel [1 ]
Roebenack, Klaus [1 ]
机构
[1] Tech Univ Dresden, Inst Regelungs & Steuerungstheorie, Fak Elektrotech & Informat Tech, D-01062 Dresden, Germany
关键词
High-Gain-Beobachter; Beobachtbarkeitsnormalform; automatisches Differenzieren; neuronale Netze; datenbasiert; high gain observer; observability canonical form; automatic differentiation; neural networks; data-driven; NONLINEAR-SYSTEMS; FORM;
D O I
10.1515/auto-2024-5066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High gain observers are frequently utilized to estimate the current internal state of nonlinear systems. The approach relies on transforming the system into the observability canonical form and occasionally embedding it into a higher dimensional space. While this can offer advantages in terms of existence conditions and convergence, the computational and implementation tasks are often daunting. In this paper, we address some of these challenges by using neural networks and automatic differentiation to approximate the necessary functions for implementing the observer. This offers a pragmatic approach to bypassing some of the problems associated with embedding observers.
引用
收藏
页码:745 / 756
页数:12
相关论文
共 50 条
  • [1] Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
    Gomez-Bombarelli, Rafael
    Wei, Jennifer N.
    Duvenaud, David
    Hernandez-Lobato, Jose Miguel
    Sanchez-Lengeling, Benjamin
    Sheberla, Dennis
    Aguilera-Iparraguirre, Jorge
    Hirzel, Timothy D.
    Adams, Ryan P.
    Aspuru-Guzik, Alan
    ACS CENTRAL SCIENCE, 2018, 4 (02) : 268 - 276
  • [2] Data-Driven Analytic Differentiation via High Gain Observers and Gaussian Process Priors
    Trimarchi, Biagio
    Gentilini, Lorenzo
    Schiano, Fabrizio
    Marconi, Lorenzo
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 3056 - 3061
  • [3] Manifold embedding data-driven mechanics
    Bahmani, Bahador
    Sun, WaiChing
    Journal of the Mechanics and Physics of Solids, 2022, 166
  • [4] Manifold embedding data-driven mechanics
    Bahmani, Bahador
    Sun, WaiChing
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 166
  • [5] Data-Driven Design
    Schmidt, Aaron
    LIBRARY JOURNAL, 2016, 141 (06) : 26 - 26
  • [6] Fault Diagnosis using Interval Data-driven LPV Observers and Structural Analysis
    Fang, Xin
    Blesa, Joaquim
    Puig, Vicenc
    IFAC PAPERSONLINE, 2024, 58 (04): : 25 - 30
  • [7] Data-driven Observers based on Autoencoder Neural Networks
    Pinto, Mauricio
    Gallegos, Javier A.
    Nunez, Felipe
    2024 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS, CCTA 2024, 2024, : 499 - 504
  • [8] Moroccan Data-Driven Spelling Normalization Using Character Neural Embedding
    Tachicart, Ridouane
    Bouzoubaa, Karim
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2021, 8 (01) : 113 - 131
  • [9] Data-Driven Automatic Cropping Using Semantic Composition Search
    Samii, A.
    Mech, R.
    Lin, Z.
    COMPUTER GRAPHICS FORUM, 2015, 34 (01) : 141 - 151
  • [10] Automatic Classification of Data-Driven Respiratory Waveforms Using AI
    Walker, M. D.
    Su, K.
    Wollenweber, S. D.
    Johnsen, R.
    McGowan, D. R.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S485 - S485