Facilely constructing ultrahigh lattice-matched CuZn5 epitaxial interface for dendrite-free Zn metal anode

被引:24
作者
Cao, Jin [1 ,2 ,3 ]
Wu, Haiyang [2 ]
Yue, Yilei [4 ]
Zhang, Dongdong [3 ,5 ]
Li, Biaoyang [2 ]
Luo, Ding [2 ]
Zhang, Lulu [2 ]
Qin, Jiaqian [6 ]
Zhang, Xinyu [3 ]
Yang, Xuelin [2 ]
机构
[1] China Three Gorges Univ, Coll Hydraul & Environm Engn, Yichang 443002, Hubei, Peoples R China
[2] China Three Gorges Univ, Coll Elect Engn & New Energy, Hubei Prov Collaborat Innovat Ctr New Energy Micro, Yichang 443002, Peoples R China
[3] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[4] North China Inst Aerosp Engn, Coll Mat Engn, Langfang 065000, Hebei, Peoples R China
[5] Shenyang Univ Technol, Sch Mat Sci & Engn, Shenyang 110870, Liaoning, Peoples R China
[6] Chulalongkorn Univ, Met & Mat Sci Res Inst, Ctr Excellence Adv Mat Energy Storage, Bangkok 10330, Thailand
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 99卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Zn anode; CuZn; 5; alloy; Lattice matching; Dendrites; Side reactions; ZINC;
D O I
10.1016/j.jechem.2024.08.023
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Constructing a protective layer on Zn anode surface with high lattice matching to Zn (002) can facilitate preferential growth along the (002) crystal plane and suppress dendritic growth as well as interface side reactions. Whereas most of protective layers are complex and costly, making commercial applications challenging. Herein, we introduce a facile method involving the addition of CuCl2 electrolyte additives to conventional electrolyte systems, which, through rapid displacement reactions and controlled electrochemical cycling, forms a CuZn5 alloy layer with 97.2% lattice matching to the (0 0 2) plane (CuZn5@Zn), thus regulating the (002) plane epitaxial deposition. As a result, the symmetric cells with CuZn5@Zn demonstrate an ultra-long cycle life of 3600 h at 1 mA cm(-2). Under extreme conditions of high current density (20 mA cm(-2)) and high zinc utilization (DODZn = 50%), stable cycling performance is maintained for 220 and 350 h, respectively. Furthermore, the CuZn5@Zn||NH4V4O10 full cell maintains a capacity of 120 mA h g(-1) even after 10,000 cycles at a high current density of 10 A g(-1). This work presents a facile and efficient strategy for constructing stable metal anode materials, with implications for the development of next-generation rechargeable batteries.
引用
收藏
页码:671 / 680
页数:10
相关论文
共 56 条
[31]   Dual Responsive Sustainable Cu2O/Cu Nanocatalyst for Sonogashira and Chan-Lam Cross-Coupling Reactions [J].
Sarmah, Manashi ;
Sarmah, Debasish ;
Dewan, Anindita ;
Bora, Porag ;
Boruah, Purna K. ;
Das, Manash R. ;
Bharali, Pankaj ;
Bora, Utpal .
CATALYSIS LETTERS, 2023, 153 (05) :1423-1437
[32]   Lightweight Zn-Philic 3D-Cu Scaffold for Customizable Zinc Ion Batteries [J].
Shi, Shaohong ;
Zhou, Dongcheng ;
Jiang, Yuheng ;
Cheng, Fangchao ;
Sun, Jianping ;
Guo, Quanquan ;
Luo, Yiteng ;
Chen, Yungui ;
Liu, Wei .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
[33]   Toward Epitaxial Growth of Misorientation-Free Graphene on Cu(111) Foils [J].
Sun, Luzhao ;
Chen, Buhang ;
Wang, Wendong ;
Li, Yanglizhi ;
Zeng, Xiongzhi ;
Liu, Haiyang ;
Liang, Yu ;
Zhao, Zhenyong ;
Cai, Ali ;
Zhang, Rui ;
Zhu, Yeshu ;
Wang, Yuechen ;
Song, Yuqing ;
Ding, Qingjie ;
Gao, Xuan ;
Peng, Hailin ;
Li, Zhenyu ;
Lin, Li ;
Liu, Zhongfan .
ACS NANO, 2022, 16 (01) :285-294
[34]   Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability [J].
Wang, Chunli ;
Gao, Yuxing ;
Sun, Lianshan ;
Zhao, Yuan ;
Yin, Dongming ;
Wang, Hairui ;
Cao, Jingchao ;
Cheng, Yong ;
Wang, Limin .
NANO RESEARCH, 2022, 15 (09) :8076-8082
[35]   Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings [J].
Wang, Xia ;
Meng, Junping ;
Lin, Xuguang ;
Yang, Yadi ;
Zhou, Shuang ;
Wang, Yaping ;
Pan, Anqiang .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (48)
[36]   MoS2-Mediated Epitaxial Plating of Zn Metal Anodes [J].
Wang, Yizhou ;
Xu, Xiangming ;
Yin, Jian ;
Huang, Gang ;
Guo, Tianchao ;
Tian, Zhengnan ;
Alsaadi, Rajeh ;
Zhu, Yunpei ;
Alshareef, Husam N. .
ADVANCED MATERIALS, 2023, 35 (06)
[37]   Establishing copper-zinc alloying strategy via active screen plasma toward stabilized zinc metal anode [J].
Wang, Zhen ;
Wang, Kehua ;
Zhu, Xiao ;
Huang, Zhiquan ;
Chen, Daming ;
Sun, Shangqi ;
Chen, Jian .
ECOMAT, 2023, 5 (05)
[38]   Efficient Zn Metal Anode Enabled by O,N-Codoped Carbon Microflowers [J].
Xu, Zhixiao ;
Jin, Song ;
Zhang, Nianji ;
Deng, Wenjing ;
Seo, Min Ho ;
Wang, Xiaolei .
NANO LETTERS, 2022, 22 (03) :1350-1357
[39]   Surface-Preferred Crystal Plane Growth Enabled by Underpotential Deposited Monolayer toward Dendrite-Free Zinc Anode [J].
Yan, Yu ;
Shu, Chaozhu ;
Zeng, Ting ;
Wen, Xiaojuan ;
Liu, Sheng ;
Deng, Dehui ;
Zeng, Ying .
ACS NANO, 2022, 16 (06) :9150-9162
[40]   Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In-Service Batteries [J].
Yang, Qi ;
Bang, Guojin ;
Guo, Ying ;
Liu, Zhuoxin ;
Yon, Boxun ;
Wang, Donghong ;
Huang, Zhaodong ;
Li, Xinliang ;
Fan, Jun ;
Zhi, Chunyi .
ADVANCED MATERIALS, 2019, 31 (43)