Facial Expression Recognition Based on Vision Transformer with Hybrid Local Attention

被引:1
|
作者
Tian, Yuan [1 ]
Zhu, Jingxuan [1 ]
Yao, Huang [1 ]
Chen, Di [1 ]
机构
[1] Cent China Normal Univ, Fac Artificial Intelligence Educ, Wuhan 430079, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 15期
关键词
facial expression recognition; attention; vision transformer;
D O I
10.3390/app14156471
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Facial expression recognition has wide application prospects in many occasions. Due to the complexity and variability of facial expressions, facial expression recognition has become a very challenging research topic. This paper proposes a Vision Transformer expression recognition method based on hybrid local attention (HLA-ViT). The network adopts a dual-stream structure. One stream extracts the hybrid local features and the other stream extracts the global contextual features. These two streams constitute a global-local fusion attention. The hybrid local attention module is proposed to enhance the network's robustness to face occlusion and head pose variations. The convolutional neural network is combined with the hybrid local attention module to obtain feature maps with local prominent information. Robust features are then captured by the ViT from the global perspective of the visual sequence context. Finally, the decision-level fusion mechanism fuses the expression features with local prominent information, adding complementary information to enhance the network's recognition performance and robustness against interference factors such as occlusion and head posture changes in natural scenes. Extensive experiments demonstrate that our HLA-ViT network achieves an excellent performance with 90.45% on RAF-DB, 90.13% on FERPlus, and 65.07% on AffectNet.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Facial Expression Recognition Using Local Sliding Window Attention
    Qiu, Shuang
    Zhao, Guangzhe
    Li, Xiao
    Wang, Xueping
    SENSORS, 2023, 23 (07)
  • [22] Facial Expression Recognition with Global Multiscale and Local Attention Network
    Zheng, Shukai
    Liu, Miao
    Zheng, Ligang
    Chen, Wenbin
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 403 - 414
  • [23] Local and correlation attention learning for subtle facial expression recognition
    Wang, Shaocong
    Yuan, Yuan
    Zheng, Xiangtao
    Lu, Xiaoqiang
    NEUROCOMPUTING, 2021, 453 : 742 - 753
  • [24] Local-Global Cross-Fusion Transformer Network for Facial Expression Recognition
    Liu, Yicheng
    Li, Zecheng
    Zhang, Yanbo
    Wen, Jie
    WEB AND BIG DATA, PT II, APWEB-WAIM 2023, 2024, 14332 : 254 - 269
  • [25] AUTOMATIC RECOGNITION OF FACIAL EXPRESSION BASED ON COMPUTER VISION
    Zhu, Shaoping
    INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, 2015, 8 (03): : 1464 - 1483
  • [26] Facial Expression Recognition Network Based on Attention Mechanism
    Zhang W.
    Li P.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (07): : 706 - 713
  • [27] Facial Expression Recognition Based on Hybrid Approach
    Mannan, Md Abdul
    Lam, Antony
    Kobayashi, Yoshinori
    Kuno, Yoshinori
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2015, PT III, 2015, 9227 : 304 - 310
  • [28] Facial Micro-Expression Recognition Enhanced by Score Fusion and a Hybrid Model from Convolutional LSTM and Vision Transformer
    Zheng, Yufeng
    Blasch, Erik
    SENSORS, 2023, 23 (12)
  • [29] Research on Facial Expression Recognition Algorithm Based on Lightweight Transformer
    Jiang, Bin
    Li, Nanxing
    Cui, Xiaomei
    Liu, Weihua
    Yu, Zeqi
    Xie, Yongheng
    INFORMATION, 2024, 15 (06)
  • [30] Lightweight Facial Expression Recognition Based on Hybrid Multiscale and Multi-Head Collaborative Attention
    Zhang, Haitao
    Zhuang, Xufei
    Gao, Xudong
    Mao, Rui
    Ren, Qing-Dao-Er-Ji
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 304 - 316