Hard carbon with an opened pore structure for enhanced sodium storage performance

被引:44
作者
You, Shunzhang [1 ]
Zhang, Qiaobao [2 ]
Liu, Junxiang [3 ]
Deng, Qiang [1 ]
Sun, Zhefei [2 ]
Cao, Dandan [1 ]
Liu, Tongchao [3 ]
Amine, Khalil [3 ]
Yang, Chenghao [1 ]
机构
[1] South China Univ Technol, New Energy Res Inst, Sch Environm & Energy, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Peoples R China
[2] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Fujian, Peoples R China
[3] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
基金
国家重点研发计划;
关键词
Anode materials - Carbon capture and storage - Carbon cycle - Carbon sequestration - Wood wastes;
D O I
10.1039/d4ee02519a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The pore structure of hard carbon has a significant impact on its Na+ storage capacity. Herein, a waste wood-derived hard carbon with opened pores (OP-HC) was fabricated with polyvinyl pyrrolidone (PVP) as an additive. Ex situ SAXS and HR-TEM testing results indicate that OP-HC with opened pores and enlarged d002 interlayer spacing facilitates the reversible (de)sodiation of Na+ ions. In situ TEM and XRD testing results demonstrate that OP-HC shows excellent structure stability during the (de)sodiation process. Thus, OP-HC delivers a high reversible charge capacity of 350.7 mA h g-1 at 0.05 C and an ultra-high initial Coulombic efficiency (ICE) of 94.9%. Moreover, OP-HC exhibits excellent cycling stability, and the assembled 18650 full cell with an OP-HC anode can achieve a high capacity retention of 94.5% after 400 cycles at 1.0 A. The excellent electrochemical performance and deep insights into OP-HC with opened pores and increased d002 interlayer spacing offer a new strategy to design high-performance HC anodes for SIBs. OP-HC shows a high specific capacity of 350.7 mA h g-1 with ultra-high ICE. These results are attributed to its opened pore and enlarged d002 interlayer spacing, which can enhance the reversibility of Na+ adsorption, intercalation and filling process.
引用
收藏
页码:8189 / 8197
页数:9
相关论文
共 41 条
[1]   A revised mechanistic model for sodium insertion in hard carbons [J].
Au, Heather ;
Alptekin, Hande ;
Jensen, Anders C. S. ;
Olsson, Emilia ;
O'Keefe, Christopher A. ;
Smith, Thomas ;
Crespo-Ribadeneyra, Maria ;
Headen, Thomas F. ;
Grey, Clare P. ;
Cai, Qiong ;
Drew, Alan J. ;
Titirici, Maria-Magdalena .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3469-3479
[2]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[3]   An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an "Adsorption-Intercalation/Filling" Hybrid Mechanism [J].
Chen, Xiaoyang ;
Tian, Jiyu ;
Li, Peng ;
Fang, Youlong ;
Fang, Yongjin ;
Liang, Xinmiao ;
Feng, Jiwen ;
Dong, Jiao ;
Ai, Xinping ;
Yang, Hanxi ;
Cao, Yuliang .
ADVANCED ENERGY MATERIALS, 2022, 12 (24)
[4]   Reconfiguring Hard Carbons with Emerging Sodium-Ion Batteries: A Perspective [J].
Chu, Yue ;
Zhang, Jun ;
Zhang, Yibo ;
Li, Qi ;
Jia, Yiran ;
Dong, Ximan ;
Xiao, Jing ;
Tao, Ying ;
Yang, Quan-Hong .
ADVANCED MATERIALS, 2023, 35 (31)
[5]   A Novel Ni-rich O3-Na[Ni0.60Fe0.25M 0.15]O2 Cathode for Na-ion Batteries [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Zhou, Dong ;
Meng, Qingshi ;
Xiao, Dongdong ;
Zhang, Qiangqiang ;
Niu, Yaoshen ;
Li, Yuqi ;
Rong, Xiaohui ;
Lu, Yaxiang ;
Chen, Liquan ;
Hu, Yong-Sheng .
ENERGY STORAGE MATERIALS, 2020, 30 (30) :420-430
[6]   Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes [J].
Dong, Ruiqi ;
Zheng, Lumin ;
Bai, Ying ;
Ni, Qiao ;
Li, Yu ;
Wu, Feng ;
Ren, Haixia ;
Wu, Chuan .
ADVANCED MATERIALS, 2021, 33 (36)
[7]   Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries [J].
Gaddam, Rohit Ranganathan ;
Yang, Dongfang ;
Narayan, Ramanuj ;
Raju, K. V. S. N. ;
Kumar, Nanjundan Ashok ;
Zhao, X. S. .
NANO ENERGY, 2016, 26 :346-352
[8]   Prospects and perspectives on advanced materials for sodium-ion batteries [J].
Gu, Zhen-Yi ;
Wang, Xiao-Tong ;
Heng, Yong-Li ;
Zhang, Kai-Yang ;
Liang, Hao-Jie ;
Yang, Jia-Lin ;
Ang, Edison Huixiang ;
Wang, Peng-Fei ;
You, Ya ;
Du, Fei ;
Wu, Xing-Long .
SCIENCE BULLETIN, 2023, 68 (20) :2302-2306
[9]   Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries [J].
Guo, Jin-Zhi ;
Gu, Zhen-Yi ;
Du, Miao ;
Zhao, Xin-Xin ;
Wang, Xiao-Tong ;
Wu, Xing-Long .
MATERIALS TODAY, 2023, 66 :221-244
[10]   An in situ dual-modification strategy for O3-NaNi1/3Fe1/3Mn1/3O2 towards high-performance sodium-ion batteries [J].
Hong, Ningyun ;
Li, Jianwei ;
Guo, Shihong ;
Han, Huawei ;
Wang, Haoji ;
Hu, Xinyu ;
Huang, Jiangnan ;
Zhang, Baichao ;
Hua, Fang ;
Song, Bai ;
Bugday, Nesrin ;
Yasar, Sedat ;
Altin, Serdar ;
Deng, Wentao ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Long, Zhen ;
Ji, Xiaobo .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (35) :18872-18880