Synchronizability of multi-layer small-world dynamical networks

被引:0
作者
Zhou, Xuanxin [1 ,2 ]
Jiang, Guo-Ping [1 ]
Wu, Yayong [1 ,2 ]
Zheng, Ying [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210023, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2025年 / 36卷 / 02期
基金
中国国家自然科学基金;
关键词
Synchronizability; multi-layer small-world dynamical networks; topological parameters; master stability function method; SYSTEMS;
D O I
10.1142/S0129183124501821
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the synchronizability of multi-layer small-world dynamical networks and discusses the significant factors affecting the synchronizability. First, we introduce the network model of multi-layer small-world dynamical networks with one-to-one connections in the inter-layer connections and each layer has the same topology. Second, we consider the topological parameters including adding probability, intra-layer coupling strength, inter-layer coupling strength, number of nodes per layer, initial node degree, and number of network layers which will influence the network's synchronizability. Third, we adopt the master stability function method and numerical simulations to analyze the synchronizability of the network. We also examine how the topological parameters influence the synchronizability of multi-layer small-world dynamical networks and the relationships among these parameters. Finally, synchronization control experiments are conducted to verify our results. As a result, we find that only increasing the number of nodes per layer will weaken the synchronizability of multi-layer small-world dynamical networks, while increasing other topological parameters will enhance the synchronizability. The current findings enable us to gain a deeper understanding of the synchronization behavior and characteristics of multi-layer small-world dynamical networks.
引用
收藏
页数:24
相关论文
共 44 条
  • [1] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [2] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [3] The structure and dynamics of multilayer networks
    Boccaletti, S.
    Bianconi, G.
    Criado, R.
    del Genio, C. I.
    Gomez-Gardenes, J.
    Romance, M.
    Sendina-Nadal, I.
    Wang, Z.
    Zanin, M.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01): : 1 - 122
  • [4] Complex brain networks: graph theoretical analysis of structural and functional systems
    Bullmore, Edward T.
    Sporns, Olaf
    [J]. NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) : 186 - 198
  • [5] Searching for Best Network Topologies with Optimal Synchronizability: A Brief Review
    Chen, Guanrong
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (04) : 573 - 577
  • [6] Enhanced synchronizability in scale-free networks
    Chen, Maoyin
    Shang, Yun
    Zhou, Changsong
    Wu, Ye
    Kurths, Juergen
    [J]. CHAOS, 2009, 19 (01)
  • [7] Synchronization in complex oscillator networks and smart grids
    Doerfler, Florian
    Chertkov, Michael
    Bullo, Francesco
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (06) : 2005 - 2010
  • [8] Synchronization properties of interconnected network based on the vital node
    Feng, Shasha
    Wang, Li
    Sun, Shiwen
    Xia, Chengyi
    [J]. NONLINEAR DYNAMICS, 2018, 93 (02) : 335 - 347
  • [9] Diffusion Dynamics on Multiplex Networks
    Gomez, S.
    Diaz-Guilera, A.
    Gomez-Gardenes, J.
    Perez-Vicente, C. J.
    Moreno, Y.
    Arenas, A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (02)
  • [10] Impact of information diffusion on epidemic spreading in partially mapping two-layered time-varying networks
    Guo, Haili
    Yin, Qian
    Xia, Chengyi
    Dehmer, Matthias
    [J]. NONLINEAR DYNAMICS, 2021, 105 (04) : 3819 - 3833