Maximum likelihood weight estimation for partial domain adaptation

被引:2
|
作者
Wen, Lisheng [1 ]
Chen, Sentao [1 ]
Hong, Zijie [2 ]
Zheng, Lin [1 ]
机构
[1] Shantou Univ, Dept Comp Sci, Shantou, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial domain adaptation; Joint distribution matching; Maximum likelihood estimation; Convex optimization;
D O I
10.1016/j.ins.2024.120800
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partial Domain Adaptation (PDA) aims to generalize a classification model from a labeled source domain to an unlabeled target domain, where the source label space contains the target label space. There are two main challenges in PDA that weaken the model's classification performance in the target domain: (i) the joint distribution of the source domain is related but different from that of the target domain, and (ii) the source outlier data, whose labels do not belong to the target label space, have a negative impact on learning the target classification model. To tackle these challenges, we propose a Maximum Likelihood Weight Estimation (MLWE) approach to estimate a weight function for the source domain. The weight function matches the joint source distribution of the relevant part to the joint target distribution, and reduces the negative impact of the source outlier data. To be specific, our approach estimates the weight function by maximizing a likelihood function, and the estimation leads to a nice convex optimization problem that has a global optimal solution. In the experiments, our approach demonstrates superior performance on popular benchmark datasets. Intro video and PyTorch code are available at https://github .com / sentaochen /Maximum -Likelihood -Weight -Estimation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Maximum Kernel Likelihood Estimation
    Jaki, Thomas
    West, R. Webster
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (04) : 976 - 993
  • [32] Maximum smoothed likelihood estimation
    Ionides, EL
    STATISTICA SINICA, 2005, 15 (04) : 1003 - 1014
  • [33] MAXIMUM LIKELIHOOD PITCH ESTIMATION
    WISE, JD
    CAPRIO, JR
    PARKS, TW
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1976, 24 (05): : 418 - 423
  • [34] Maximum likelihood and methods of estimation
    Pearson, ES
    BIOMETRIKA, 1937, 29 : 155 - 156
  • [35] Maximum entropy and maximum likelihood in spectral estimation
    Bell Lab, Murray Hill, United States
    IEEE Trans Inf Theory, 3 (1332-1336):
  • [36] Poisson mean vector estimation with nonparametric maximum likelihood estimation and application to protein domain data
    Park, Hoyoung
    Park, Junyong
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 3789 - 3835
  • [37] Maximum entropy and maximum likelihood in spectral estimation
    Landau, HJ
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1332 - 1336
  • [38] Attraction Domain in Gradient Optimization-based Sample Maximum Likelihood Estimation
    Zou, Yiqun
    Tang, Xiafei
    IFAC PAPERSONLINE, 2015, 48 (28): : 314 - 319
  • [39] Errors-in-variables identification using maximum likelihood estimation in the frequency domain
    Soderstrom, Torsten
    Soverini, Umberto
    AUTOMATICA, 2017, 79 : 131 - 143
  • [40] Maximum-likelihood parameter estimation in terahertz time-domain spectroscopy
    Mohtashemi, Laleh
    Westlund, Paul
    Sahota, Derek G.
    Lea, Graham B.
    Bushfield, Ian
    Mousavi, Payam
    Dodge, J. Steven
    OPTICS EXPRESS, 2021, 29 (04) : 4912 - 4926