Maximum likelihood weight estimation for partial domain adaptation

被引:2
|
作者
Wen, Lisheng [1 ]
Chen, Sentao [1 ]
Hong, Zijie [2 ]
Zheng, Lin [1 ]
机构
[1] Shantou Univ, Dept Comp Sci, Shantou, Peoples R China
[2] South China Univ Technol, Sch Software Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial domain adaptation; Joint distribution matching; Maximum likelihood estimation; Convex optimization;
D O I
10.1016/j.ins.2024.120800
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partial Domain Adaptation (PDA) aims to generalize a classification model from a labeled source domain to an unlabeled target domain, where the source label space contains the target label space. There are two main challenges in PDA that weaken the model's classification performance in the target domain: (i) the joint distribution of the source domain is related but different from that of the target domain, and (ii) the source outlier data, whose labels do not belong to the target label space, have a negative impact on learning the target classification model. To tackle these challenges, we propose a Maximum Likelihood Weight Estimation (MLWE) approach to estimate a weight function for the source domain. The weight function matches the joint source distribution of the relevant part to the joint target distribution, and reduces the negative impact of the source outlier data. To be specific, our approach estimates the weight function by maximizing a likelihood function, and the estimation leads to a nice convex optimization problem that has a global optimal solution. In the experiments, our approach demonstrates superior performance on popular benchmark datasets. Intro video and PyTorch code are available at https://github .com / sentaochen /Maximum -Likelihood -Weight -Estimation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On the Maximum Likelihood Estimation of Population and Domain Means
    Wywial, Janusz L. L.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2023, 17 (03)
  • [2] On the Maximum Likelihood Estimation of Population and Domain Means
    Janusz L. Wywiał
    Journal of Statistical Theory and Practice, 2023, 17
  • [3] Partial maximum likelihood estimation of spatial probit models
    Wang, Honglin
    Iglesias, Emma M.
    Wooldridge, Jeffrey M.
    JOURNAL OF ECONOMETRICS, 2013, 172 (01) : 77 - 89
  • [4] MAXIMUM LIKELIHOOD ESTIMATION UNDER PARTIAL SPARSITY CONSTRAINTS
    Routtenberg, Tirza
    Eldar, Yonina C.
    Tong, Lang
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6421 - 6425
  • [5] On the equivalence of time and frequency domain maximum likelihood estimation
    Agueero, Juan C.
    Yuz, Juan I.
    Goodwin, Graham C.
    Delgado, Ramon A.
    AUTOMATICA, 2010, 46 (02) : 260 - 270
  • [6] Joint weight optimization for partial domain adaptation via kernel statistical distance estimation
    Chen, Sentao
    NEURAL NETWORKS, 2024, 180
  • [7] Localization of a Partial Discharge Source Using Maximum Likelihood Estimation
    Ishimaru, Hirokazu
    Kawada, Masatake
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 5 (05) : 516 - 522
  • [8] Accurate Estimation of Partial Discharge Location using Maximum Likelihood
    Wadi, Ali
    Al-Masri, Wasim
    Siyam, Wisal
    Abdel-Hafez, Mamoun F.
    El-Hag, Ayman H.
    IEEE SENSORS LETTERS, 2018, 2 (04)
  • [9] Information geometry of maximum partial likelihood estimation for channel equalization
    Xuan, JH
    Adah, T
    Liu, X
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3533 - 3536
  • [10] A frequency domain algorithm for maximum likelihood estimation of Gaussian fields
    Butler, NA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (02) : 151 - 165