Conic optimization for control, energy systems, and machine learning: Applications and algorithms

被引:6
|
作者
Zhang, Richard Y. [1 ]
Josz, Cedric [2 ]
Sojoudi, Somayeh [2 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
Conic optimization; Numerical algorithms; Control theory; Energy; Machine learning; INTERIOR-POINT METHODS; OPTIMAL POWER-FLOW; INVERSE COVARIANCE ESTIMATION; SEMIDEFINITE PROGRAMS; MATRIX COMPLETION; NONNEGATIVE POLYNOMIALS; EXPLOITING SPARSITY; RANK SOLUTIONS; RELAXATIONS; COMPACT;
D O I
10.1016/j.arcontrol.2018.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 340
页数:18
相关论文
共 50 条
  • [11] Machine Learning Empowered Optimization Algorithms and Their Applications and Prospects in New Type Power System
    Wang, Xinying
    Yan, Dong
    Shi, Zhan
    Zhang, Dongxia
    Deng, Qi
    Lin, Zhenwei
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44 (16): : 6367 - 6384
  • [12] Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles
    Fayyazi, Mojgan
    Sardar, Paramjotsingh
    Thomas, Sumit Infent
    Daghigh, Roonak
    Jamali, Ali
    Esch, Thomas
    Kemper, Hans
    Langari, Reza
    Khayyam, Hamid
    SUSTAINABILITY, 2023, 15 (06)
  • [13] Memory Footprint Optimization Techniques for Machine Learning Applications in Embedded Systems
    Katsaragakis, Manolis
    Papadopoulos, Lazaros
    Konijnenburg, Mario
    Catthoor, Francky
    Soudris, Dimitrios
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [14] Machine learning algorithms in ship design optimization
    Peri, Daniele
    SHIP TECHNOLOGY RESEARCH, 2024, 71 (01) : 1 - 13
  • [15] A Review of Machine Learning Algorithms for Biomedical Applications
    Binson, V. A.
    Thomas, Sania
    Subramoniam, M.
    Arun, J.
    Naveen, S.
    Madhu, S.
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (04) : 1051 - 1066
  • [16] Machine Learning: A Review of the Algorithms and Its Applications
    Dhall, Devanshi
    Kaur, Ravinder
    Juneja, Mamta
    PROCEEDINGS OF RECENT INNOVATIONS IN COMPUTING, ICRIC 2019, 2020, 597 : 47 - 63
  • [17] A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization
    Shadmani, Alireza
    Nikoo, Mohammad Reza
    Gandomi, Amir H.
    Wang, Ruo-Qian
    Golparvar, Behzad
    ENERGY STRATEGY REVIEWS, 2023, 49
  • [18] Machine Learning Algorithms Comparison for Manufacturing Applications
    Almanei, Mohammed
    Oleghe, Omogbai
    Jagtap, Sandeep
    Salonitis, Konstantinos
    ADVANCES IN MANUFACTURING TECHNOLOGY XXXIV, 2021, 15 : 377 - 382
  • [19] A Review of Machine Learning Algorithms for Biomedical Applications
    V. A. Binson
    Sania Thomas
    M. Subramoniam
    J. Arun
    S. Naveen
    S. Madhu
    Annals of Biomedical Engineering, 2024, 52 : 1159 - 1183
  • [20] Machine Learning-Based Optimization Techniques for Renewable Energy Systems
    Rupa, Gummadi Sri
    Nuvvula, Ramakrishna S. S.
    Kumar, Polamarasetty P.
    Ali, Ahmed
    Khan, Baseem
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 389 - 394