A hybrid bat and grey wolf optimizer for gene selection in cancer classification

被引:2
|
作者
Tbaishat, Dina [1 ]
Tubishat, Mohammad [2 ]
Makhadmeh, Sharif Naser [3 ,4 ]
Alomari, Osama Ahmad [5 ]
机构
[1] Zayed Univ, Coll Technol Innovat, Dubai, U Arab Emirates
[2] Zayed Univ, Coll Technol Innovat, Abu Dhabi, U Arab Emirates
[3] Univ Jordan, King Abdullah Sch Informat Technol 2, Amman 11942, Jordan
[4] Ajman Univ, Artificial Intelligence Res Ctr AIRC, Ajman, U Arab Emirates
[5] Abu Dhabi Univ, Coll Engn, Dept Comp Sci & Informat Technol, Abu Dhabi, U Arab Emirates
关键词
Bat algorithm; Grey wolf optimizer; Gene selection optimization; rMRMR; Classification; ALGORITHM;
D O I
10.1007/s10115-024-02225-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
DNA microarray is a technique in which a chip containing numerous DNA codes is used for the expression estimation of an extensive number of genes simultaneously. These genes are arranged in a table or data format. The gene expression data can be employed in pattern recognition algorithms to differentiate between samples obtained from healthy individuals and those with cancer. However, recognizing biomarkers' patterns from gene selection data is considered challenging because of its huge dimensionality and the presence of noisy, irrelevant, and unwanted genes, leading to mislearning process and, thus, declining in the classification performance. Therefore, in this paper, an intelligent gene selection approach is proposed on the basis of robust minimum redundancy maximum relevancy as the filter and hybrid improved bat algorithm (BA) with grey wolf optimizer (GWO) (BA-GWO). The BA-GWO is introduced to determinate a limited number of biomarker genes that significantly enhance the classification performance. In this approach, the k-nearest neighbor algorithm was employed for the classification task. The proposed BA-GWO is mainly introduced to improve the BA search agents' performance in searching for the best candidate gene subset that carries the biomarkers for cancer classification. Furthermore, the BA-GWO is designed to enhance both exploitation and exploration capabilities while ensuring a balanced approach and preventing stagnation in local optima. The primary function of this proposed approach is to enhance the solutions acquired through the BA by utilizing them as the initial population for the GWO. The proposed approach is evaluated using ten widely recognized microarray datasets in the experimental stage, including CNS, Colon, Leukemia 3c, Leukemia 4c, Leukemia, Lung Cancer, Lymphoma, MLL, Ovarian, and SRBCT. The performance of the hybridization of BA and GWO, as well as recent and base optimization algorithms, is evaluated. Afterward, the hybrid versions are compared with their individual optimization algorithms. Moreover, the hybridization algorithms are compared with each other. For further validation, the proposed approach performance is compared with twelve state-of-the-art comparative methods in terms of accuracy and the selected genes. The findings indicate that the proposed approach yields superior outcomes in two out of eight datasets, while also delivering highly competitive results in the remaining datasets.
引用
收藏
页码:455 / 495
页数:41
相关论文
共 50 条
  • [21] A Hybrid Differential Evolution with Grey Wolf Optimizer for Continuous Global Optimization
    Jitkongchuen, Duangjai
    2015 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2015, : 51 - 54
  • [22] Statistically aided Binary Multi-Objective Grey Wolf Optimizer: a new feature selection approach for classification
    Ukken, Amal Francis, V
    Jayachandran, Arjun Bindu
    Malayathodi, Jaideep Kumar Punnath
    Das, Pranesh
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (12) : 12869 - 12901
  • [23] Improved dynamic grey wolf optimizer
    Zhang, Xiaoqing
    Zhang, Yuye
    Ming, Zhengfeng
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2021, 22 (06) : 877 - 890
  • [24] Potential corrections to grey wolf optimizer
    Tsai, Hsing-Chih
    Shi, Jun -Yang
    APPLIED SOFT COMPUTING, 2024, 161
  • [25] A Novel Hybrid Gradient-Based Optimizer and Grey Wolf Optimizer Feature Selection Method for Human Activity Recognition Using Smartphone Sensors
    Helmi, Ahmed Mohamed
    Al-qaness, Mohammed A. A.
    Dahou, Abdelghani
    Damasevicius, Robertas
    Krilavicius, Tomas
    Abd Elaziz, Mohamed
    ENTROPY, 2021, 23 (08)
  • [26] Binary grey wolf optimizer with a novel population adaptation strategy for feature selection
    Wang, Dazhi
    Ji, Yanjing
    Wang, Hongfeng
    Huang, Min
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (17) : 2313 - 2331
  • [27] Grey Wolf Optimizer for Efficient Feature Selection in Robotic Systems
    Obaideen, Khaled
    AlShabi, Mohammad A.
    Bettayeb, Maamar
    Bonny, Talal
    DIMENSIONAL OPTICAL METROLOGY AND INSPECTION FOR PRACTICAL APPLICATIONS XIII, 2024, 13038
  • [28] Multi-objective Grey Wolf Optimizer for improved cervix lesion classification
    Sahoo, Anita
    Chandra, Satish
    APPLIED SOFT COMPUTING, 2017, 52 : 64 - 80
  • [29] An Improved Grey Wolf Optimizer for a Supplier Selection and Order Quantity Allocation Problem
    Alejo-Reyes, Avelina
    Cuevas, Erik
    Rodriguez, Alma
    Mendoza, Abraham
    Olivares-Benitez, Elias
    MATHEMATICS, 2020, 8 (09)
  • [30] A hybrid grey wolf optimizer for solving the product knapsack problem
    Zewen Li
    Yichao He
    Ya Li
    Xiaohu Guo
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 201 - 222