Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge

被引:1
作者
Stroebl, Florian [1 ,2 ]
Schaeufl, Florian [2 ]
Bohlen, Oliver [2 ]
Palm, Herbert [1 ]
机构
[1] Munich Univ Appl Sci, Inst Sustainable Energy Syst, Syst Engn Lab, D-80335 Munich, Germany
[2] Munich Univ Appl Sci, Inst Sustainable Energy Syst, Energy Storage Lab, D-80335 Munich, Germany
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Parametric statistics; Parameter estimation; Aging; Accuracy; Vectors; Predictive models; Uncertainty; Battery management systems; Lifetime estimation; Battery aging; calendar aging; design of experiments; experimental setup optimization; multi-stage experiment; optimal experimental design; parametric models; parameter estimation; MODEL-BASED DESIGN; UNCERTAINTY;
D O I
10.1109/ACCESS.2024.3446234
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal Experimental Design (OED) aims to maximize information about model parameters with minimal experiments. Methodically, OED is based on the principle of maximizing Fisher information. The calculation of an optimized test plan thereby requires a qualified estimate, i.e. a priori information, about the true value of the parameters to be estimated. This paper introduces a novel Multi-Stage Optimal Experimental Design (MS-OED) framework that integrates Latin Hypercube (LH) sampling and OED for scenarios lacking prior system knowledge. The Virtual Experimental Framework (VEF) evaluates multiple experimental setups, assessing their impact on parameter estimation accuracy. Applied to a simulative lithium ion (Li-ion) battery calendar aging study, our MS-OED framework demonstrates, that reducing the duration of initial LH experiments allows for more effective subsequent OED stages, achieving a 92% reduction in the standard deviation of parameter estimates compared to single-stage design of experiments (DoE). This approach also reduces the experimental duration required to achieve similar confidence levels in parameter estimation to 32% of the time needed by conventional single-stage DoE. Sensitivity analysis further confirms the robustness of the pi-OED approach against uncertainties in initial parameter estimates for the given parametric model. The results highlight the framework's potential to significantly enhance the efficiency and accuracy of experiments, particularly in applications where prior knowledge is limited.
引用
收藏
页码:120440 / 120453
页数:14
相关论文
共 51 条
[1]   Assessment of the calendar aging of lithium-ion batteries for a long-term-Space missions [J].
Ali, Hayder ;
Beltran, Hector ;
Lindsey, Nancy J. ;
Pecht, Michael .
FRONTIERS IN ENERGY RESEARCH, 2023, 11
[2]  
Anderson M.J., 2010, Kirk-Othmer Encyclopedia of Chemical Technology, P1
[3]  
[Anonymous], 2009, Experiments: Planning, Analysis, and Optimization
[4]   Designing robust optimal dynamic experiments [J].
Asprey, SP ;
Macchietto, S .
JOURNAL OF PROCESS CONTROL, 2002, 12 (04) :545-556
[5]  
Atkinson A. C., With SAS
[6]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[7]   Parameter variations within Li-Ion battery packs - Theoretical investigations and experimental quantification [J].
Baumann, Michael ;
Wildfeuer, Leo ;
Rohr, Stephan ;
Lienkamp, Markus .
JOURNAL OF ENERGY STORAGE, 2018, 18 :295-307
[8]   Production caused variation in capacity aging trend and correlation to initial cell performance [J].
Baumhoefer, Thorsten ;
Bruehl, Manuel ;
Rothgang, Susanne ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 247 :332-338
[9]  
Box G.E., 1987, Empirical model-building and response surfaces
[10]  
Box G. E. P., 1978, Statistics for experimenters. An introduction to design, data analysis and model building.