A Primer on Deep Learning for Causal Inference

被引:0
作者
Koch, Bernard J. [1 ,2 ]
Sainburg, Tim [3 ]
Geraldo Bastias, Pablo [4 ]
Jiang, Song [5 ]
Sun, Yizhou [5 ]
Foster, Jacob G. [6 ,7 ,8 ,9 ]
机构
[1] Northwestern Kellogg Sch Management, Ctr Sci Sci & Innovat, Evanston, IL USA
[2] Univ Chicago, Dept Sociol, Chicago, IL USA
[3] Harvard Med Sch, Dept Neurol, Boston, MA USA
[4] Univ Oxford, Nuffield Coll, Oxford, England
[5] UCLA, Dept Comp Sci, Los Angeles, CA USA
[6] Indiana Univ Bloomington, Cognit Sci Program, Bloomington, IA USA
[7] Indiana Univ, Luddy Sch Informat Comp & Engn, Dept Informat, Bloomington, IN USA
[8] UCLA, Dept Sociol, Los Angeles, CA USA
[9] Santa Fe Inst, Santa Fe, NM USA
关键词
NEURAL-NETWORKS; MORTALITY;
D O I
10.1177/00491241241234866
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to extend causal inference to settings where confounding is nonlinear, time-varying, or encoded in text, networks, and images. To maximize accessibility, we also introduce prerequisite concepts from causal inference and deep learning. The primer differs from other treatments of deep learning and causal inference in its sharp focus on observational causal estimation, its extended exposition of key algorithms, and its detailed tutorials for implementing, training, and selecting among deep estimators in TensorFlow 2 and PyTorch.
引用
收藏
页码:397 / 447
页数:51
相关论文
共 90 条
[1]  
Alaa AM, 2019, PR MACH LEARN RES, V97
[2]  
Alicia Curth, 2021, P NEUR INF PROC SYST, V1
[3]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[4]  
Amir Feder, 2021, ARXIV
[5]  
Andrew Jesson, 2021, ARXIV
[6]  
Atan O, 2018, AAAI CONF ARTIF INTE, P2071
[7]   Recursive partitioning for heterogeneous causal effects [J].
Athey, Susan ;
Imbens, Guido .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) :7353-7360
[8]  
Austin Peter C., 2011, MULTIVAR BEHAV RES, V46, p399 424
[9]  
Bengio Yoshua, 2013, Statistical Language and Speech Processing. First International Conference, SLSP 2013. Proceedings: LNCS 7978, P1, DOI 10.1007/978-3-642-39593-2_1
[10]   Doubly robust nonparametric inference on the average treatment effect [J].
Benkeser, D. ;
Carone, M. ;
van der Laan, M. J. ;
Gilbert, P. B. .
BIOMETRIKA, 2017, 104 (04) :863-880