Synthetic Depth Image-Based Category-Level Object Pose Estimation With Effective Pose Decoupling and Shape Optimization

被引:0
|
作者
Yu, Sheng [1 ]
Zhai, Di-Hua [1 ]
Xia, Yuanqing [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Zhongyuan Univ Technol, Sch Automat, Zhengzhou 450007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pose estimation; Three-dimensional displays; Point cloud compression; Solid modeling; Shape; Feature extraction; Computational modeling; 3-D reconstruction; object detection; point sampling; pose estimation; shape optimization;
D O I
10.1109/TIM.2024.3427799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Category-level object pose estimation is a crucial task in the field of computer vision and finds numerous applications. However, the presence of unknown objects, significant shape, and scale variations within the same category pose challenges in this task. To address these challenges and achieve efficient and accurate category-level object pose estimation, we present EffectPose in this article. We first observe that objects of the same category often possess similar key regions, such as handles on cups. These key regions can establish correspondences for spatial poses, enabling pose estimation. To facilitate this, we employ a segmentation network to divide point clouds into multiple parts and map them to a shared latent space. Subsequently, by considering the correspondences between predicted implicit models and real point clouds for various key regions, we accomplish pose estimation. Since real object point clouds are typically dense and contain outliers, we propose a novel point cloud sampling network that can accurately select representative points for efficient correspondence construction. Furthermore, we decouple the scale and pose of objects based on the SIM(3) invariant descriptor and propose an online pose optimization method using this descriptor. This method enables online prediction and optimization of poses. Finally, to enhance pose estimation accuracy, we introduce a distance-weighted pose optimization method for pose refinement and adjustment. Experimental results demonstrate that our proposed method achieves efficient pose estimation and generalization by utilizing only synthetic depth images and a minimal number of network parameters, surpassing the performance of most existing methods.
引用
收藏
页数:18
相关论文
共 46 条
  • [1] TG-Pose: Delving Into Topology and Geometry for Category-Level Object Pose Estimation
    Zhan, Yue
    Wang, Xin
    Nie, Lang
    Zhao, Yang
    Yang, Tangwen
    Ruan, Qiuqi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9749 - 9762
  • [2] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1857 - 1871
  • [3] GPT-COPE: A Graph-Guided Point Transformer for Category-Level Object Pose Estimation
    Zou, Lu
    Huang, Zhangjin
    Gu, Naijie
    Wang, Guoping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2385 - 2398
  • [4] Open-Vocabulary Category-Level Object Pose and Size Estimation
    Cai, Junhao
    He, Yisheng
    Yuan, Weihao
    Zhu, Siyu
    Dong, Zilong
    Bo, Liefeng
    Chen, Qifeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7661 - 7668
  • [5] Category-Level 6D Object Pose Estimation With Structure Encoder and Reasoning Attention
    Liu, Jierui
    Cao, Zhiqiang
    Tang, Yingbo
    Liu, Xilong
    Tan, Min
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6728 - 6740
  • [6] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    SENSORS, 2024, 24 (16)
  • [7] Keypoint-Based Disentangled Pose Network for Category-Level 6-D Object Pose Tracking
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Park, Unsang
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2022, 42 (05) : 28 - 36
  • [8] CLIPose: Category-Level Object Pose Estimation With Pre-Trained Vision-Language Knowledge
    Lin, Xiao
    Zhu, Minghao
    Dang, Ronghao
    Zhou, Guangliang
    Shu, Shaolong
    Lin, Feng
    Liu, Chengju
    Chen, Qijun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9125 - 9138
  • [9] Category-Level Object Pose Estimation in Heavily Cluttered Scenes by Generalized Two-Stage Shape Reconstructor
    Tatemichi, Hiroki
    Kawanishi, Yasutomo
    Deguchi, Daisuke
    Ide, Ichiro
    Murase, Hiroshi
    IEEE ACCESS, 2024, 12 : 33440 - 33448
  • [10] Toward Real-World Category-Level Articulation Pose Estimation
    Liu, Liu
    Xue, Han
    Xu, Wenqiang
    Fu, Haoyuan
    Lu, Cewu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1072 - 1083