ON UNRESTRICTED DUAL-GENERALIZED COMPLEX HORADAM NUMBERS

被引:0
作者
Ait-Amrane, N. Rosa [1 ,2 ]
Tan, Elif [3 ]
机构
[1] Medea Univ, Dept Math & Comp Sci, Fac Sci, Medea 26000, Algeria
[2] Lab Math & Its Applicat, LaMa, Medea, Algeria
[3] Ankara Univ, Sci Fac, Dept Math, TR-06100 Ankara, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2024年 / 73卷 / 02期
关键词
Hypercomplex numbers; dual generalized complex numbers; Horadam numbers; Fibonacci numbers; FIBONACCI;
D O I
10.31801/cfsuasmas.1406328
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. This research introduces a novel category of dual-generalized complex numbers, with components represented by unrestricted Horadam numbers. We present various recurrence relations, summation formulas, the Binet formula, and the generating function associated with these numbers. Additionally, a comprehensive bilinear index-reduction formula is derived, which encompasses Vajda's, Catalan's, Cassini's, D'Ocagne's, and Halton's identities as specific cases.
引用
收藏
页码:517 / 528
页数:12
相关论文
共 23 条
[1]   HYPER-DUAL HORADAM QUATERNIONS [J].
Ait-Amrane, N. Rosa ;
Gok, Ismail ;
Tan, Elif .
MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) :903-913
[2]   Dual-complex k-Fibonacci numbers [J].
Aydin, Fugen Torunbalci .
CHAOS SOLITONS & FRACTALS, 2018, 115 :1-6
[3]  
Bilgici G., 2018, International Journal of Mathematics and Systems Science, V1, DOI [10.24294/ijmss.v1i3.816, DOI 10.24294/IJMSS.V1I3.816]
[4]   Some unrestricted Fibonacci and Lucas hyper-complex numbers [J].
Bilgici, Goksal ;
Dasdemir, Ahmet .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2020, 24 (01) :37-48
[5]   A Study on Dual Hyperbolic Fibonacci and Lucas Numbers [J].
Cihan, Arzu ;
Azak, Ayse Zeynep ;
Gungor, Mehmet Ali ;
Tosun, Murat .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (01) :35-48
[6]  
Cockle J., 1849, Philosophical magazine, London-Dublin-Edinburgh, V34, P37, DOI [10.1080/14786444908646169, DOI 10.1080/14786444908646169]
[7]   Principle of transference - An extension to hyper-dual numbers [J].
Cohen, Avraham ;
Shoham, Moshe .
MECHANISM AND MACHINE THEORY, 2018, 125 :101-110
[8]  
Dasdemir A., 2021, Fundamental Journal of Mathematics and Applications, V4, P1
[9]   Gaussian Mersenne numbers and generalized Mersenne quaternions [J].
Dasdemir, Ahmet ;
Bilgici, Goksal .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2019, 25 (03) :87-96
[10]  
Fike J. A., 2009, 3 ANN STUD JOINT WOR