Signless Laplacian energies of non-commuting graphs of finite groups and related results

被引:1
作者
Sharma, Monalisha [1 ]
Nath, Rajat Kanti [1 ]
机构
[1] Tezpur Univ, Dept Math Sci, Napaam 784028, Assam, India
关键词
Non-commuting graph; spectrum; energy; SPECTRUM;
D O I
10.1142/S1793830924500605
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-commuting graph of a non-abelian group G with center Z(G) is a simple undirected graph whose vertex set is G\Z(G) and two vertices x,y are adjacent if xy not equal yx. In this paper, we compute Signless Laplacian spectrum and Signless Laplacian energy of non-commuting graphs of certain finite non-abelian groups. We obtain several conditions such that the non-commuting graph of G is Q-integral and observe relations between energy, Signless Laplacian energy and Laplacian energy. In addition, we look into the hyperenergetic and hypoenergetic properties of non-commuting graphs of finite groups. We also assess whether the same graphs are Q-hyperenergetic and L-hyperenergetic.
引用
收藏
页数:68
相关论文
共 50 条
  • [21] SOME RESULTS ON NON-COMMUTING GRAPH OF A FINITE GROUP
    Darafsheh, M. R.
    Bigdely, H.
    Bahrami, A.
    Monfared, M. Davoudi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, (27): : 107 - 118
  • [22] Some results on the non-commuting graph of a finite group
    Moradipour, K.
    Ilangovan, Sh
    Rashid, S.
    SCIENCEASIA, 2019, 45 (05): : 482 - 487
  • [23] A Note on Integral Non-Commuting Graphs
    Ghorbania, Modjtaba
    Gharavi-Alkhansari, Zahra
    FILOMAT, 2017, 31 (03) : 663 - 669
  • [24] Non-commuting graphs of AC-groups are End-regular
    Wang, Zhijun
    Wang, Dengyin
    ARS COMBINATORIA, 2016, 125 : 313 - 320
  • [25] Representing graphs by the non-commuting relation
    Abert, Miklos
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 69 (03): : 261 - 269
  • [26] Various spectra and energies of commuting graphs of finite rings
    Fasfous, Walaa Nabil Taha
    Nath, Rajat Kanti
    Sharafdini, Reza
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 1915 - 1925
  • [27] Generalization of Randic Index of the Non-commuting Graph for Some Finite Groups
    Roslly, Siti Rosllydia Dania
    Ab Halem, Nur Fatimah Az Zahra
    Zailani, Nur Syasya Sahira
    Alimon, Nur Idayu
    Mohammad, Siti Afiqah
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (05): : 762 - 768
  • [28] Groups with the same non-commuting graph
    Darafsheh, M. R.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 833 - 837
  • [29] Szeged and Padmakar-Ivan Energies of Non-Commuting Graph for Dihedral Groups
    Romdhini, Mamika Ujianita
    Abdurahim, Salwa
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2024, 20 (05): : 1183 - 1191
  • [30] Some results on signless Laplacian coefficients of graphs
    Mirzakhah, Maryam
    Kiani, Dariush
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2243 - 2251