Crystallization-Induced Liquid Gate for Tunable Gas Flow Control

被引:1
|
作者
Han, Yuhang [1 ]
Huang, Xinlu [1 ]
Chi, Kunxiang [1 ]
Liu, Jing [1 ,3 ]
Zhang, Yunmao [2 ]
Zhang, Jian [1 ]
Hou, Xu [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Coll Phys Sci & Technol, Fujian Prov Key Lab Soft Funct Mat Res, Res Inst Biomimet & Soft Matter, Xiamen 361005, Fujian, Peoples R China
[3] Innovat Lab Sci & Technol Energy Mat Fujian Prov I, Xiamen 361102, Fujian, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2024年 / 15卷 / 35期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Compendex;
D O I
10.1021/acs.jpclett.4c01928
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gas flow control is essential in multifarious fields, such as chemical engineering, environmental governance, and biomedical science. More precise regulation, especially tunable gas flow rates, will spark further applications in smart valves, microreactors, and drug delivery. Here, we propose a crystallization-induced liquid gate (CILG) comprising a supersaturated gating liquid confined within a solid framework capable of tunable gas flow rates under steady-state pressure in a simple and compact manner. When ultrasound is employed to stimulate the crystallization, the CILG exhibits different gas transport behaviors due to the adjustable pore sizes modulated by crystal morphologies under varied ultrasound intensities. Additionally, the exothermic crystallization process allows CILG with variable gas permeability to be observable via infrared imaging. Moreover, we demonstrate the potential applications of CILG in infrared-monitored flow-regulating valves and gas-involved chemical reactors.
引用
收藏
页码:8997 / 9002
页数:6
相关论文
共 43 条
  • [1] Miniature liquid flow sensor and feedback control of electroosmotic and pneumatic flows for a micro gas analysis system
    Ohira, Shin-Ichi
    Toda, Kei
    Anal. Sci., 1600, 1 (61-65):
  • [2] Exhaust gas turbocharging with waste gate control for small diesel engines
    Henssler, H.D.
    Rebling, P.
    MTZ Motortechnische Zeitschrift, 1980, 41 (10) : 437 - 442
  • [3] IDENTIFICATION OF GAS-LIQUID STREAM FLOW PATTERNS.
    Khomyakov, G.D.
    Karataev, R.N.
    Kopyrin, M.A.
    Soviet Aeronautics (English translation of Izvestiya VUZ, Aviatsionnaya Tekhnika), 1982, 25 (02): : 109 - 112
  • [4] Nonlinear waves induced by molecular flow in liquid crystals
    Sheu, C.-R.
    Pan, R.-P.
    Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals, 265 (pt 5):
  • [5] FLOW REGIMES ON SIEVE-TRAYS FOR GAS/LIQUID CONTACTING.
    Hofhuis, P.A.M.
    Technische Hogeschool Delft, Afdeling der Werktuigbouwkunde (Report) WTHD, 1980, (124):
  • [6] Hovering Velocity of Large Liquid Drops in a Flow of Gas or Vapor.
    Sorokin, Yu.L.
    Demidova, L.N.
    Energomashinostroenie, 1981, (01): : 25 - 27
  • [7] Discharge coefficient for gas-liquid mixture flow over a weir
    Takahashi, Teruo
    Miyahara, Toshiro
    Sato, Takashi
    Sugano, Katsuo
    Kagaku Kogaku Ronbunshu, 1978, 4 (02) : 206 - 208
  • [8] STABILITY OF A CYLINDRICAL LAYER OF A MAGNETIZABLE LIQUID WITH A FLOW OF GAS AROUND IT.
    Bashtovoi, V.G.
    Krakov, M.S.
    Magnetohydrodynamics New York, N.Y., 1980, 16 (02): : 137 - 141
  • [9] HOW TO SELECT LIQUID-FLOW CONTROL VALVES.
    Carey, James A.
    Hammitt, Donn
    1600, (85):
  • [10] Development of a New Ceramic Substrate with Gas Flow Control Functionality
    Yoshida T.
    Suzuki H.
    Aoki Y.
    Hayashi N.
    Ito K.
    SAE International Journal of Engines, 2017, 10 (04) : 1588 - 1594