A Symmetrical Analysis of Decision Making: Introducing the Gaussian Negative Binomial Mixture with a Latent Class Choice Model

被引:1
|
作者
Sajjad, Irsa [1 ]
Nafisah, Ibrahim Ali [2 ]
Almazah, Mohammed M. A. [3 ]
Alamri, Osama Abdulaziz [4 ]
Dar, Javid Gani [5 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2454, Riyadh 11451, Saudi Arabia
[3] King Khalid Univ, Coll Sci & Arts Muhyil, Dept Math, Muhyil 61421, Saudi Arabia
[4] Univ Tabuk, Fac Sci, Stat Dept, Tabuk 47512, Saudi Arabia
[5] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Dept Appl Sci, Pune 412115, India
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 07期
关键词
unsupervised machine learning; Gaussian mixture model; latent class choice model; negative binomial mixture model; indoor environmental quality; thermal comfort models; ENVIRONMENTAL-QUALITY IEQ; INDOOR; SATISFACTION; ACCEPTANCE; COMFORT;
D O I
10.3390/sym16070908
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research presents a model called the 'Gaussian negative binomial mixture with a latent class choice model', which serves as a robust and efficient tool for analyzing decisions across different areas. Our innovative model combines elements of mixture models, negative binomial distributions, and latent class choice modeling to create an approach that captures the complexities of decision-making processes. We explain how the model is formulated and estimated, showcasing its effectiveness in analyzing and predicting choices in scenarios. Through the use of a dataset, we demonstrate the performance of this method, marking a significant advancement in choice modeling. Our results highlight the applications of this model and point towards promising directions for future research, especially in exploring symmetrical patterns and structures, within decision-making processes.
引用
收藏
页数:17
相关论文
共 3 条