Evolution of eigenvalue of the Wentzell-Laplace operator along the conformal mean curvature flow

被引:0
作者
Azami, Shahroud [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Pure Math, Fac Sci, Qazvin, Iran
来源
ARKIV FOR MATEMATIK | 2024年 / 62卷 / 01期
关键词
eigenvalues; Wentzell-Laplace operator; mean curvature flow; conformal; GEOMETRIC OPERATORS; 1ST EIGENVALUES; YAMABE PROBLEM; MANIFOLDS; BOUNDARY; CONVERGENCE; EXISTENCE; METRICS;
D O I
10.4310/ARKIV.2024.v62.n1.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate continuity, differentiability and monotonicity for the first nonzero eigenvalue of the Wentzell-Laplace operator along the conformal mean curvature flow on n-dimensional compact manifolds with boundary for n >= 3 under a boundary condition. In especial, we show that the first nonzero eigenvalue of the Wentzell-Laplace operator is monotonic under the conformal mean curvature flow and we find some monotonic quantities dependent to the first nonzero eigenvalue along the conformal mean curvature flow.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 26 条
[1]  
Almaraz S, 2020, ANN SCUOLA NORM-SCI, V20, P1197
[2]   Convergence of scalar-flat metrics on manifolds with boundary under a Yamabe-type flow [J].
Almaraz, Sergio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2626-2694
[3]  
[Anonymous], 1988, Contemporary mathematics, DOI [10.1090/conm/071/954419, DOI 10.1090/CONM/071/954419]
[4]   SOME RESULTS OF EVOLUTION OF THE FIRST EIGENVALUE OF WEIGHTED p-LAPLACIAN ALONG THE EXTENDED RICCI FLOW [J].
Azami, Shahroud .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (03) :953-966
[5]  
Brendle S., 2002, Asian J. Math., V6, P625
[6]   First eigenvalues of geometric operators under the Ricci flow [J].
Cao, Xiaodong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) :4075-4078
[7]  
Cao XD, 2007, MATH ANN, V337, P435, DOI 10.1007/s00208-006-0043-5
[8]   An extremal eigenvalue problem for the Wentzell-Laplace operator [J].
Dambrine, M. ;
Kateb, D. ;
Lamboley, J. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :409-450
[9]  
Daneshvar F, 2020, B BELG MATH SOC-SIM, V27, P17
[10]   Estimates for eigenvalues of the Wentzell-Laplace operator [J].
Du, Feng ;
Wang, Qiaoling ;
Xia, Changyu .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 :25-33