Few-shot fine-grained recognition in remote sensing ship images with global and local feature aggregation

被引:0
|
作者
Zhou, Guoqing [1 ]
Huang, Liang [1 ]
Zhang, Xianfeng [1 ]
机构
[1] Naval Univ Engn, Sch Elect Engn, Wuhan 430000, Peoples R China
关键词
Feature aggregation; Few-shot detection; Remote sensing; Fine-grained detection;
D O I
10.1016/j.asr.2024.06.077
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Remote sensing ship image detection methods have broad application prospects in areas such as maritime traffic and fisheries management. However, previous detection methods relied heavily on a large amount of accurately annotated training data. When the number of remote sensing ship targets is scarce, the detection performance of previous methods is unsatisfactory. To address this issue, this paper proposes a few-shot detection method based on global and local feature aggregation. Specifically, we introduce global and local feature aggregation. We aggregate query-image global and local features with support features. This encourages the model to learn invariant features under varying global feature conditions which enhances the model's performance in training and inference. Building upon this, we propose combined feature aggregation, where query features are aggregated with all support features in the same batch, further reducing the confusion of target features caused by the imbalance between base-class samples and novel-class samples, improving the model's learning effectiveness for novel classes. Additionally, we employ an adversarial autoencoder to reconstruct support features, enhancing the model's generalization performance. Finally, the model underwent extensive experiments on the publicly available remote sensing ship dataset HRSC-2016. The results indicate that compared to the baseline model, our model achieved new state-of-the-art performance under various dataset settings. This model presented in this paper will provide new insights for few-shot detection work based on meta-learning. (c) 2024 COSPAR. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:3735 / 3748
页数:14
相关论文
共 50 条
  • [1] A few-shot fine-grained image recognition method
    Wang, Jianwei
    Chen, Deyun
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2023, 71 (01)
  • [2] Variational Feature Disentangling for Fine-Grained Few-Shot Classification
    Xu, Jingyi
    Le, Hieu
    Huang, Mingzhen
    Athar, ShahRukh
    Samaras, Dimitris
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8792 - 8801
  • [3] Variational Feature Imitation Conditioned on Visual Descriptions for Few-Shot Fine-Grained Recognition
    Lu, Xin
    Pan, Yixuan
    Cao, Yichao
    Zhou, Xin
    Lu, Xiaobo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2215 - 2229
  • [4] Structural Subspace Learning for Few-shot Fine-grained Recognition
    Li, Linjia
    Deng, Jin
    Huang, Ying
    Chen, Yanyan
    Luo, Wei
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 693 - 699
  • [5] Dual Attention Networks for Few-Shot Fine-Grained Recognition
    Xu, Shu-Lin
    Zhang, Faen
    Wei, Xiu-Shen
    Wang, Jianhua
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2911 - 2919
  • [6] Global and Local Attention Embedding Network for Few-Shot Fine-Grained Image Classification
    Hu, Jiayuan
    Own, Chung-Ming
    Tao, Wenyuan
    WEB AND BIG DATA, PT I, APWEB-WAIM 2020, 2020, 12317 : 740 - 747
  • [7] A few-shot fine-grained image classification method leveraging global and local structures
    Cao, Siyu
    Wang, Wen
    Zhang, Jing
    Zheng, Min
    Li, Qingyong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (08) : 2273 - 2281
  • [8] A few-shot fine-grained image classification method leveraging global and local structures
    Siyu Cao
    Wen Wang
    Jing Zhang
    Min Zheng
    Qingyong Li
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 2273 - 2281
  • [9] Feature fusion network based on few-shot fine-grained classification
    Yang, Yajie
    Feng, Yuxuan
    Zhu, Li
    Fu, Haitao
    Pan, Xin
    Jin, Chenlei
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [10] Few-Shot Fine-Grained Ship Classification With a Foreground-Aware Feature Map Reconstruction Network
    Li, Yangfan
    Bian, Chunjiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60