Entropy of strongly coupled Yukawa fluids

被引:4
作者
Khrapak, S. A. [1 ]
机构
[1] Russian Acad Sci, Joint Inst High Temp, Moscow 125412, Russia
关键词
COMPLEX DUSTY PLASMAS; UNIVERSAL SCALING LAW; TRANSPORT-COEFFICIENTS; DISPERSION-RELATIONS; SELF-DIFFUSION; SYSTEMS;
D O I
10.1103/PhysRevE.110.034602
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The entropy of strongly coupled Yukawa fluids is discussed from several perspectives. First, it is demonstrated that a vibrational paradigm of atomic dynamics in dense fluids can be used to obtain a simple and accurate estimate of the entropy without any adjustable parameters. Second, it is explained why a quasiuniversal value of the excess entropy of simple fluids at the freezing point should be expected, and it is demonstrated that a remaining very weak dependence of the freezing point entropy on the screening parameter in the Yukawa fluid can be described by a simple linear function. Third, a scaling of the excess entropy with the freezing temperature is examined, a modified form of the Rosenfeld-Tarazona scaling is put forward, and some consequences are briefly discussed. Fourth, the location of the Frenkel line on the phase diagram of Yukawa systems is discussed in terms of the excess entropy and compared with some predictions made in the literature. Fifth, the excess entropy scaling of the transport coefficients (self-diffusion, viscosity, and thermal conductivity) is reexamined using the contemporary datasets for the transport properties of Yukawa fluids. The results could be of particular interest in the context of complex (dusty) plasmas, colloidal suspensions, electrolytes, and other related systems with soft pairwise interactions.
引用
收藏
页数:10
相关论文
共 93 条
[1]  
Allen MP., 1991, COMPUTER SIMULATION, DOI DOI 10.1007/BF00646086
[2]   Physics and applications of dusty plasmas: The Perspectives 2023 [J].
Beckers, J. ;
Berndt, J. ;
Block, D. ;
Bonitz, M. ;
Bruggeman, P. J. ;
Coueedel, L. ;
Delzanno, G. L. ;
Feng, Y. ;
Gopalakrishnan, R. ;
Greiner, F. ;
Hartmann, P. ;
Horanyi, M. ;
Kersten, H. ;
Knapek, C. A. ;
Konopka, U. ;
Kortshagen, U. ;
Kostadinova, E. G. ;
Kovacevic, E. ;
Krasheninnikov, S. I. ;
Mann, I. ;
Mariotti, D. ;
Matthews, L. S. ;
Melzer, A. ;
Mikikian, M. ;
Nosenko, V. ;
Pustylnik, M. Y. ;
Ratynskaia, S. ;
Sankaran, R. M. ;
Schneider, V. ;
Thimsen, E. J. ;
Thomas, E. ;
Thomas, H. M. ;
Tolias, P. ;
van de Kerkhof, M. .
PHYSICS OF PLASMAS, 2023, 30 (12)
[3]   An entropy scaling demarcation of gas- and liquid-like fluid behaviors [J].
Bell, Ian H. ;
Galliero, Guillaume ;
Delage-Santacreu, Stephanie ;
Costigliola, Lorenzo .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (19)
[4]   Modified Entropy Scaling of the Transport Properties of the Lennard-Jones Fluid [J].
Bell, Ian H. ;
Messerly, Richard ;
Thol, Monika ;
Costigliola, Lorenzo ;
Dyre, Jeppe C. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (29) :6345-6363
[5]   The phonon theory of liquid thermodynamics [J].
Bolmatov, D. ;
Brazhkin, V. V. ;
Trachenko, K. .
SCIENTIFIC REPORTS, 2012, 2
[6]   Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids [J].
Bolmatov, Dima ;
Zhernenkov, Mikhail ;
Zav'yalov, Dmitry ;
Stoupin, Stanislav ;
Cai, Yong Q. ;
Cunsolo, Alessandro .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (15) :3048-3053
[7]  
Brazhkin VV, 2013, PHYS REV LETT, V111, DOI 10.1103/PhysRevLett.111.145901
[8]   Where is the supercritical fluid on the phase diagram? [J].
Brazhkin, V. V. ;
Lyapin, A. G. ;
Ryzhov, V. N. ;
Trachenko, K. ;
Fomin, Yu D. ;
Tsiok, E. N. .
PHYSICS-USPEKHI, 2012, 55 (11) :1061-1079
[9]   Two liquid states of matter: A dynamic line on a phase diagram [J].
Brazhkin, V. V. ;
Fomin, Yu D. ;
Lyapin, A. G. ;
Ryzhov, V. N. ;
Trachenko, K. .
PHYSICAL REVIEW E, 2012, 85 (03)
[10]   Behavior of Supercritical Fluids across the "Frenkel Line" [J].
Bryk, T. ;
Gorelli, F. A. ;
Mryglod, I. ;
Ruocco, G. ;
Santoro, M. ;
Scopigno, T. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (20) :4995-5001