Benchmarking reservoir computing for residential energy demand forecasting

被引:4
作者
Brucke, Karoline [1 ]
Schmitz, Simon [2 ]
Koeglmayr, Daniel [3 ]
Baur, Sebastian [3 ]
Raeth, Christoph [3 ]
Ansari, Esmail [4 ]
Klement, Peter [1 ]
机构
[1] DLR Inst Networked Energy Syst, Carl Von Ossietzky Str 15, D-26129 Oldenburg, Germany
[2] DLR Inst Software Technol, D-51147 Cologne, Germany
[3] DLR Inst Safety & Secur, Wilhelm Runge Str 10, D-89081 Ulm, Germany
[4] Fraunhofer Inst Mfg Technol & Adv Mat IFAM, Wiener Str 12, D-28359 Bremen, Germany
关键词
Reservoir computing; Next generation reservoir computing; Recurrent network architectures; Energy demand forecasting; LSTM; ECHO STATE NETWORKS; TERM ELECTRIC-LOAD; SYSTEMS;
D O I
10.1016/j.enbuild.2024.114236
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In the energy sector, accurate demand forecasts are vital but often limited by the available computational power. Reservoir computing (RC) or echo-state networks excel in chaotic time series prediction, with lower computational requirements compared to other recurrent network based methods like LSTMs. Next-generation reservoir computing (NG-RC) is a newer, more efficient variant of classical RC originating from nonlinear vector autoregression and therefore missing the randomness of classical RC. In our study, we evaluate RC and NG-RC for day-ahead energy demand predictions on four data sets and compare it to LSTMs and a naive persistence approach. We find that NG-RC outperforms all other methods when considering the root mean squared error on all data sets but struggles with very small or zero demands. Additionally, it offers a very computationally effective hyperparameter optimization and excels in replicating the inherent volatility and the erratic behavior of energy demands.
引用
收藏
页数:10
相关论文
共 58 条
  • [1] Abadi M., 2015, TensorFlow. Large-Scale Machine Learning on Heterogeneous Systems, V1, DOI DOI 10.5281/ZENODO.8071599
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] Spintronic Physical Reservoir for Autonomous Prediction and Long-Term Household Energy Load Forecasting
    Al Misba, Walid
    Mavikumbure, Harindra S.
    Rajib, Md Mahadi
    Marino, Daniel L.
    Cobilean, Victor
    Manic, Milos
    Atulasimha, Jayasimha
    [J]. IEEE ACCESS, 2023, 11 : 124725 - 124737
  • [4] A summary of demand response in electricity markets
    Albadi, M. H.
    El-Saadany, E. F.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (11) : 1989 - 1996
  • [5] A review of data-driven building energy consumption prediction studies
    Amasyali, Kadir
    El-Gohary, Nora M.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 : 1192 - 1205
  • [6] Power system flexibility: A review
    Babatunde, O. M.
    Munda, J. L.
    Hamam, Y.
    [J]. ENERGY REPORTS, 2020, 6 : 101 - 106
  • [7] Learning spatiotemporal chaos using next-generation reservoir computing
    Barbosa, Wendson A. S.
    Gauthier, Daniel J.
    [J]. CHAOS, 2022, 32 (09)
  • [8] Basterrech S., 2017, RECENT ADV SOFT COMP, P88
  • [9] Bendali Wadie, 2021, Digital Technologies and Applications. Proceedings of ICDTA 21. Lecture Notes in Networks and Systems (LNNS 211), P1305, DOI 10.1007/978-3-030-73882-2_119
  • [10] Bendali W., 2022, J. Eur. Syst. Autom., V55, P11