Dehazing stray light algorithm for fundus retinal image

被引:0
作者
Gai, Junshuai [1 ,2 ]
Ma, Yuting [1 ,2 ]
Zhang, Yunhai [2 ]
Yang, Haomin [2 ]
Liu, Yulong [3 ]
Xiao, Yun [2 ,4 ]
Wei, Tongda [2 ,5 ]
机构
[1] Changchun Univ Sci & Technol, Coll Elect & Informat Engn, Changchun 130000, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Jiangsu Key Lab Med Opt, Suzhou 215163, Peoples R China
[3] Soochow Univ, Affiliated Hosp 2, Suzhou 215004, Peoples R China
[4] Shenyang Guoke Guangming Med Technol Co Ltd, Shenyang 110167, Peoples R China
[5] Jinan Guoke Med Technol Dev Co Ltd, Jinan 250102, Peoples R China
关键词
image dehazing; retinal image; dark channel prior; atmospheric scattering model; gamma correction; REGISTRATION;
D O I
10.37188/CJLCD.2023-0289
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
This paper addresses the issue of hazy stray light in fundus retinal images, , which leads to unclear blood vessel details. The proposed dehazing algorithm for fundus retinal images is based on the dark channel theory and incorporates Gamma transformation. The algorithm enhances the clarity of the image while preserving blood vessel information. This algorithm aims to defog images by processing the R, , G and B channels separately. Firstly, , the algorithm calculates the dark channel image using adaptive window minimum filtering and takes the average value of the top 0. 1% pixels as the atmospheric illumination intensity value. Secondly, , the algorithm solves the rough transmittance of the image and improves it using the guided filtering algorithm. Finally, , the algorithm restores the haze-free image using the atmospheric scattering model and applies Gamma transformation. The experimental results show that the information entropy and average gradient of the restored image increase by an average of about 6. 8 % and 11. 6 %, , respectively. The algorithm in this paper can quickly and effectively remove hazy stray light in the fundus retinal image, , restore the image to be clear and natural, , and retain the details information of retinal blood vessels.
引用
收藏
页码:1070 / 1078
页数:9
相关论文
共 26 条
[1]  
Adelson EH, 1984, RCA Engineer, V29, P33
[2]  
[Anonymous], 2022, LIN L H, V59
[3]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[4]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[5]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667
[6]   Pulmonary CT Registration Through Supervised Learning With Convolutional Neural Networks [J].
Eppenhof, Koen A. J. ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) :1097-1105
[7]  
Fan J., 2021, P 2021 IEEE INT C AU, P1, DOI [DOI 10.1109/ICAS49788.2021.9551165, 10.1109/ICAS49788.2021.9551165]
[8]   FreeSurfer [J].
Fischl, Bruce .
NEUROIMAGE, 2012, 62 (02) :774-781
[9]   Deep learning in medical image registration: a review [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (20)
[10]  
Glasner D, 2009, IEEE I CONF COMP VIS, P349, DOI 10.1109/ICCV.2009.5459271