The space of Gauss maps of complete minimal surfaces

被引:0
|
作者
Alarcon, Antonio [1 ,2 ]
Larusson, Finnur [3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva S-N, E-18071 Granada, Spain
[2] Univ Granada, Inst Matemat IMAG, Campus Fuentenueva S-N, E-18071 Granada, Spain
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
关键词
NULL CURVES; PRINCIPLE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gauss map of a conformal minimal immersion of an open Riemann surface M into R-3 is a meromorphic function on M. In this paper, we prove that the Gauss map assignment, taking a full conformal minimal immersion M -> R-3 to its Gauss map, is a Serre fibration. We then determine the homotopy type of the space of meromorphic functions on M that are the Gauss map of a complete full conformal minimal immersion, and show that it is the same as the homotopy type of the space of all continuous maps from M to the 2-sphere. We obtain analogous results for the generalised Gauss map of conformal minimal immersions M -> R-n for arbitrary n >= 3.
引用
收藏
页码:669 / 688
页数:20
相关论文
共 50 条