Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC

被引:0
|
作者
Lee, Yeonghun [1 ]
Park, Sung-Hye [2 ,3 ]
Lee, Hyunju [1 ,4 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] Seoul Natl Univ, Seoul Natl Univ Hosp, Coll Med, Dept Pathol, 103 Daehak Ro, Seoul 03080, South Korea
[3] Seoul Natl Univ, Coll Med, Neurosci Res Inst, 103 Daehak Ro, Seoul 03080, South Korea
[4] Gwangju Inst Sci & Technol, AI Grad Sch, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
关键词
Hi-C Prediction; 3D Genome; Structural Variation; Cancer Genome; Deep Learning; STRUCTURAL VARIATION; HI-C; VARIANTS; QUANTIFICATION; ASSOCIATION; LANDSCAPE; DISCOVERY;
D O I
10.1038/s44320-024-00065-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 3D genome prediction in cancer is crucial for uncovering the impact of structural variations (SVs) on tumorigenesis, especially when they are present in noncoding regions. We present InfoHiC, a systemic framework for predicting the 3D cancer genome directly from whole-genome sequencing (WGS). InfoHiC utilizes contig-specific copy number encoding on the SV contig assembly, and performs a contig-to-total Hi-C conversion for the cancer Hi-C prediction from multiple SV contigs. We showed that InfoHiC can predict 3D genome folding from all types of SVs using breast cancer cell line data. We applied it to WGS data of patients with breast cancer and pediatric patients with medulloblastoma, and identified neo topologically associating domains. For breast cancer, we discovered super-enhancer hijacking events associated with oncogenic overexpression and poor survival outcomes. For medulloblastoma, we found SVs in noncoding regions that caused super-enhancer hijacking events of medulloblastoma driver genes (GFI1, GFI1B, and PRDM6). In addition, we provide trained models for cancer Hi-C prediction from WGS at https://github.com/dmcb-gist/InfoHiC, uncovering the impacts of SVs in cancer patients and revealing novel therapeutic targets. InfoHiC is developed for cancer 3D genome prediction enabling to find neo-TADs and neo-loops starting from whole genome sequencing reads.InfoHiC is trained from available cancer Hi-C data and predicts Hi-C matrices for patients with cancer, which eliminates the burden of high Hi-C sequencing costs.InfoHiC takes whole genome sequencing reads in contrast to other Hi-C prediction tools requiring pre-defined sequences, enabling Hi-C prediction from cancer genomes where users cannot define sequence inputs easily.It analyzes all structural variation types including those found in non-coding regions, and predicts the impact on cancer development in the 3D genome context.It can lead to personalized medication by discovering neo-TADs and neo-loops in patients where common coding driver mutations or copy number changes are not found. InfoHiC is developed for cancer 3D genome prediction enabling to find neo-TADs and neo-loops starting from whole genome sequencing reads.
引用
收藏
页码:1156 / 1172
页数:17
相关论文
共 50 条
  • [31] Benefits for children with suspected cancer from routine whole-genome sequencing
    Hodder, Angus
    Leiter, Sarah M.
    Kennedy, Jonathan
    Addy, Dilys
    Ahmed, Munaza
    Ajithkumar, Thankamma
    Allinson, Kieren
    Ancliff, Phil
    Bailey, Shivani
    Barnard, Gemma
    Burke, G. A. Amos
    Burns, Charlotte
    Cano-Flanagan, Julian
    Chalker, Jane
    Coleman, Nicholas
    Cheng, Danny
    Clinch, Yasmin
    Dryden, Caryl
    Ghorashian, Sara
    Griffin, Blanche
    Horan, Gail
    Hubank, Michael
    May, Phillippa
    McDerra, Joanna
    Nagrecha, Rajvi
    Nicholson, James
    O'Connor, David
    Pavasovic, Vesna
    Quaegebeur, Annelies
    Rao, Anupama
    Roberts, Thomas
    Samarasinghe, Sujith
    Stasevich, Iryna
    Tadross, John A.
    Trayers, Claire
    Trotman, Jamie
    Vora, Ajay
    Watkins, James
    Chitty, Lyn S.
    Bowdin, Sarah
    Armstrong, Ruth
    Murray, Matthew J.
    Hook, Catherine E.
    Tarpey, Patrick
    Vedi, Aditi
    Bartram, Jack
    Behjati, Sam
    NATURE MEDICINE, 2024, : 1905 - 1912
  • [32] Prediction of Staphylococcus aureus Antimicrobial Resistance by Whole-Genome Sequencing
    Gordon, N. C.
    Price, J. R.
    Cole, K.
    Everitt, R.
    Morgan, M.
    Finney, J.
    Kearns, A. M.
    Pichon, B.
    Young, B.
    Wilson, D. J.
    Llewelyn, M. J.
    Paul, J.
    Peto, T. E. A.
    Crook, D. W.
    Walker, A. S.
    Golubchik, T.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2014, 52 (04) : 1182 - 1191
  • [33] Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance
    Wang, Luqi
    Yang, Jinghui
    Chen, Liang
    Wang, Weibing
    Yu, Fangyou
    Xiong, Haiyan
    EPIDEMIOLOGY & INFECTION, 2022, 150
  • [34] Deep whole-genome sequencing of 3 cancer cell lines on 2 sequencing platforms
    Arora, Kanika
    Shah, Minita
    Johnson, Molly
    Sanghvi, Rashesh
    Shelton, Jennifer
    Nagulapalli, Kshithija
    Oschwald, Dayna M.
    Zody, Michael C.
    Germer, Soren
    Jobanputra, Vaidehi
    Carter, Jade
    Robine, Nicolas
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [35] Prediction of antimicrobial resistance in clinicalCampylobacter jejuniisolates from whole-genome sequencing data
    Dahl, Louise Gade
    Joensen, Katrine Grimstrup
    Osterlund, Mark Thomas
    Kiil, Kristoffer
    Nielsen, Eva Moller
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2021, 40 (04) : 673 - 682
  • [36] Deep whole-genome sequencing of 3 cancer cell lines on 2 sequencing platforms
    Kanika Arora
    Minita Shah
    Molly Johnson
    Rashesh Sanghvi
    Jennifer Shelton
    Kshithija Nagulapalli
    Dayna M. Oschwald
    Michael C. Zody
    Soren Germer
    Vaidehi Jobanputra
    Jade Carter
    Nicolas Robine
    Scientific Reports, 9
  • [37] Personalized pharmacogenomics profiling using whole-genome sequencing
    Mizzi, Clint
    Peters, Brock
    Mitropoulou, Christina
    Mitropoulos, Konstantinos
    Katsila, Theodora
    Agarwal, Misha R.
    van Schaik, Ron H. N.
    Drmanac, Radoje
    Borg, Joseph
    Patrinos, George P.
    PHARMACOGENOMICS, 2014, 15 (09) : 1223 - 1234
  • [38] A Study on the Prediction of Cancer Using Whole-Genome Data and Deep Learning
    Lee, Young-Ji
    Park, Jun-Hyung
    Lee, Seung-Ho
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [39] Whole-genome re-sequencing
    Bentley, David R.
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2006, 16 (06) : 545 - 552
  • [40] Whole-Genome Sequencing in Healthy People
    Lindor, Noralane M.
    Thibodeau, Stephen N.
    Burke, Wylie
    MAYO CLINIC PROCEEDINGS, 2017, 92 (01) : 159 - 172