Prediction of the 3D cancer genome from whole-genome sequencing using InfoHiC

被引:0
|
作者
Lee, Yeonghun [1 ]
Park, Sung-Hye [2 ,3 ]
Lee, Hyunju [1 ,4 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] Seoul Natl Univ, Seoul Natl Univ Hosp, Coll Med, Dept Pathol, 103 Daehak Ro, Seoul 03080, South Korea
[3] Seoul Natl Univ, Coll Med, Neurosci Res Inst, 103 Daehak Ro, Seoul 03080, South Korea
[4] Gwangju Inst Sci & Technol, AI Grad Sch, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
关键词
Hi-C Prediction; 3D Genome; Structural Variation; Cancer Genome; Deep Learning; STRUCTURAL VARIATION; HI-C; VARIANTS; QUANTIFICATION; ASSOCIATION; LANDSCAPE; DISCOVERY;
D O I
10.1038/s44320-024-00065-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 3D genome prediction in cancer is crucial for uncovering the impact of structural variations (SVs) on tumorigenesis, especially when they are present in noncoding regions. We present InfoHiC, a systemic framework for predicting the 3D cancer genome directly from whole-genome sequencing (WGS). InfoHiC utilizes contig-specific copy number encoding on the SV contig assembly, and performs a contig-to-total Hi-C conversion for the cancer Hi-C prediction from multiple SV contigs. We showed that InfoHiC can predict 3D genome folding from all types of SVs using breast cancer cell line data. We applied it to WGS data of patients with breast cancer and pediatric patients with medulloblastoma, and identified neo topologically associating domains. For breast cancer, we discovered super-enhancer hijacking events associated with oncogenic overexpression and poor survival outcomes. For medulloblastoma, we found SVs in noncoding regions that caused super-enhancer hijacking events of medulloblastoma driver genes (GFI1, GFI1B, and PRDM6). In addition, we provide trained models for cancer Hi-C prediction from WGS at https://github.com/dmcb-gist/InfoHiC, uncovering the impacts of SVs in cancer patients and revealing novel therapeutic targets. InfoHiC is developed for cancer 3D genome prediction enabling to find neo-TADs and neo-loops starting from whole genome sequencing reads.InfoHiC is trained from available cancer Hi-C data and predicts Hi-C matrices for patients with cancer, which eliminates the burden of high Hi-C sequencing costs.InfoHiC takes whole genome sequencing reads in contrast to other Hi-C prediction tools requiring pre-defined sequences, enabling Hi-C prediction from cancer genomes where users cannot define sequence inputs easily.It analyzes all structural variation types including those found in non-coding regions, and predicts the impact on cancer development in the 3D genome context.It can lead to personalized medication by discovering neo-TADs and neo-loops in patients where common coding driver mutations or copy number changes are not found. InfoHiC is developed for cancer 3D genome prediction enabling to find neo-TADs and neo-loops starting from whole genome sequencing reads.
引用
收藏
页码:1156 / 1172
页数:17
相关论文
共 50 条
  • [21] Whole-genome sequencing strategies
    Stein, Richard, 1600, Mary Ann Liebert Inc. (34):
  • [22] Recommend Whole-Genome Sequencing
    Dimmock, David
    NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (25): : 2444 - 2445
  • [23] Whole-genome sequencing and the physician
    Thorogood, A.
    Knoppers, B. M.
    Dondorp, W. J.
    de Wert, G. M. W. R.
    CLINICAL GENETICS, 2012, 81 (06) : 511 - 513
  • [24] Clinical whole-genome sequencing
    Orli G. Bahcall
    Nature Reviews Genetics, 2015, 16 (7) : 377 - 377
  • [25] Genetic landscape of human mitochondrial genome using whole-genome sequencing
    Wang, Yijing
    Zhao, Guihu
    Fang, Zhenghuan
    Pan, Hongxu
    Zhao, Yuwen
    Wang, Yige
    Zhou, Xun
    Wang, Xiaomeng
    Luo, Tengfei
    Zhang, Yi
    Wang, Zheng
    Chen, Qian
    Dong, Lijie
    Huang, Yuanfeng
    Zhou, Qiao
    Xia, Lu
    Li, Bin
    Guo, Jifeng
    Xia, Kun
    Tang, Beisha
    Li, Jinchen
    HUMAN MOLECULAR GENETICS, 2022, 31 (11) : 1747 - 1761
  • [26] Analysis of the bread wheat genome using whole-genome shotgun sequencing
    Rachel Brenchley
    Manuel Spannagl
    Matthias Pfeifer
    Gary L. A. Barker
    Rosalinda D’Amore
    Alexandra M. Allen
    Neil McKenzie
    Melissa Kramer
    Arnaud Kerhornou
    Dan Bolser
    Suzanne Kay
    Darren Waite
    Martin Trick
    Ian Bancroft
    Yong Gu
    Naxin Huo
    Ming-Cheng Luo
    Sunish Sehgal
    Bikram Gill
    Sharyar Kianian
    Olin Anderson
    Paul Kersey
    Jan Dvorak
    W. Richard McCombie
    Anthony Hall
    Klaus F. X. Mayer
    Keith J. Edwards
    Michael W. Bevan
    Neil Hall
    Nature, 2012, 491 : 705 - 710
  • [27] Cancer detection using whole-genome sequencing of cell free DNA
    Leary, Rebecca J.
    Sausen, Mark
    Diaz, Luis A., Jr.
    Velculescu, Victor E.
    ONCOTARGET, 2013, 4 (08) : 1119 - 1120
  • [28] Cancer carrier screening in the general population using whole-genome sequencing
    Chang, Ya-Sian
    Chao, Dy-San
    Chung, Chin-Chun
    Chou, Yu-Pao
    Chang, Chieh-Min
    Lin, Chia-Li
    Chu, Hou-Wei
    Chen, Hon-Da
    Liu, Ting-Yuan
    Juan, Yu-Hsuan
    Chang, Shun-Jen
    Chang, Jan-Gowth
    CANCER MEDICINE, 2023, 12 (02): : 1972 - 1983
  • [29] Whole-genome sequencing of triple negative breast cancer
    Kawazu, Masahito
    Ueno, Toshihide
    Kojima, Shinya
    Totoki, Yasushi
    Shibata, Tatsuhiro
    Mano, Hiroyuki
    CANCER SCIENCE, 2018, 109 : 857 - 857
  • [30] Whole-genome sequencing and analysis of an ovarian cancer patient
    Bentink, S.
    Sultana, R.
    Rubio, R.
    Matulonis, U.
    Quackenbush, J.
    EJC SUPPLEMENTS, 2010, 8 (07): : 179 - 180