Post-Translational Modification of PTEN Protein: Quantity and Activity

被引:2
作者
Li, Xiao [1 ]
Yang, Pu [1 ]
Hou, Xiaoli [1 ]
Ji, Shaoping [1 ,2 ]
机构
[1] Zhengzhou Shuqing Med Coll, Dept Basic Med, Zhengzhou, Henan, Peoples R China
[2] Henan Univ, Med Sch, Dept Biochem & Mol Biol, Kaifeng, Henan, Peoples R China
来源
ONCOLOGY REVIEWS | 2024年 / 18卷
基金
中国国家自然科学基金;
关键词
PTEN; phosphorylation; acetylation; ubiquitination; SUMOylation; NUCLEAR PTEN; CANCER; PHOSPHORYLATION; PHOSPHATASE; EXOSOMES; PATHWAY; COMPLEX; LIGASE;
D O I
10.3389/or.2024.1430237
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Post-translational modifications play crucial roles in regulating protein functions and stabilities. PTEN is a critical tumor suppressor involved in regulating cellular proliferation, survival, and migration processes. However, dysregulation of PTEN is common in various human cancers. PTEN stability and activation/suppression have been extensively studied in the context of tumorigenesis through inhibition of the PI3K/AKT signaling pathway. PTEN undergoes various post-translational modifications, primarily including phosphorylation, acetylation, ubiquitination, SUMOylation, neddylation, and oxidation, which finely tune its activity and stability. Generally, phosphorylation modulates PTEN activity through its lipid phosphatase function, leading to altered power of the signaling pathways. Acetylation influences PTEN protein stability and degradation rate. SUMOylation has been implicated in PTEN localization and interactions with other proteins, affecting its overall function. Neddylation, as a novel modification of PTEN, is a key regulatory mechanism in the loss of tumor suppressor function of PTEN. Although current therapeutic approaches focus primarily on inhibiting PI3 kinase, understanding the post-translational modifications of PTEN could help provide new therapeutic strategies that can restore PTEN's role in PIP3-dependent tumors. The present review summarizes the major recent developments in the regulation of PTEN protein level and activity. We expect that these insights will contribute to better understanding of this critical tumor suppressor and its potential implications for cancer therapy in the future.
引用
收藏
页数:8
相关论文
共 76 条
[1]   Nuclear PTEN Controls DNA Repair and Sensitivity to Genotoxic Stress [J].
Bassi, C. ;
Ho, J. ;
Srikumar, T. ;
Dowling, R. J. O. ;
Gorrini, C. ;
Miller, S. J. ;
Mak, T. W. ;
Neel, B. G. ;
Raught, B. ;
Stambolic, V. .
SCIENCE, 2013, 341 (6144) :395-399
[2]   Dibutyl phthalate-induced oxidative stress and apoptosis in swine testis cells and therapy of naringenin via PTEN/PI3K/AKT signaling pathway [J].
Chen, Huijie ;
Zhang, Yue ;
Zou, Mengmeng ;
Sun, Xiaowei ;
Huang, Xiaodan ;
Xu, Shiwen .
ENVIRONMENTAL TOXICOLOGY, 2022, 37 (08) :1840-1852
[3]   ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells [J].
Chen, Jing-Hong ;
Zhang, Peng ;
Chen, Wen-Dan ;
Li, Dan-Dan ;
Wu, Xiao-Qi ;
Deng, Rong ;
Jiao, Lin ;
Li, Xuan ;
Ji, Jiao ;
Feng, Gong-Kan ;
Zeng, Yi-Xin ;
Jiang, Jian-Wei ;
Zhu, Xiao-Feng .
AUTOPHAGY, 2015, 11 (02) :239-252
[4]   WWP2: A Multifunctional Ubiquitin Ligase Gene [J].
Chen, Wei ;
Jiang, Xiaofei ;
Luo, Zhuang .
PATHOLOGY & ONCOLOGY RESEARCH, 2014, 20 (04) :799-803
[5]   Functional impact and targetability of PI3KCA, GNAS, and PTEN mutations in a spindle cell rhabdomyosarcoma with MYOD1 L122R mutation [J].
Choo, Florence ;
Odinstov, Igor ;
Nusser, Kevin ;
Nicholson, Katelyn S. S. ;
Davis, Lara ;
Corless, Christopher L. L. ;
Stork, Linda ;
Somwar, Romel ;
Ladanyi, Marc ;
Davis, Jessica L. L. ;
Davare, Monika A. A. .
COLD SPRING HARBOR MOLECULAR CASE STUDIES, 2022, 8 (01)
[6]   The structural basis of PTEN regulation by multi-site phosphorylation [J].
Dempsey, Daniel R. ;
Viennet, Thibault ;
Iwase, Reina ;
Park, Eunyoung ;
Henriquez, Stephanie ;
Chen, Zan ;
Jeliazkov, Jeliazko R. ;
Palanski, Brad A. ;
Phan, Kim L. ;
Coote, Paul ;
Gray, Jeffrey J. ;
Eck, Michael J. ;
Gabelli, Sandra B. ;
Arthanari, Haribabu ;
Cole, Philip A. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2021, 28 (10) :858-+
[7]   BAP1 suppresses prostate cancer progression by deubiquitinating and stabilizing PTEN [J].
Deng, Rong ;
Guo, Yanmin ;
Li, Lian ;
He, Jianfeng ;
Qiang, Zhe ;
Zhang, Hailong ;
Chen, Ran ;
Wang, Yanli ;
Zhao, Xian ;
Yu, Jianxiu .
MOLECULAR ONCOLOGY, 2021, 15 (01) :279-298
[8]   Resveratrol regulates PTEN/Akt pathway through inhibition of MTA1/HDAC unit of the NuRD complex in prostate cancer [J].
Dhar, Swati ;
Kumar, Avinash ;
Li, Kun ;
Tzivion, Guri ;
Levenson, Anait S. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2015, 1853 (02) :265-275
[9]   The world of protein acetylation [J].
Drazic, Adrian ;
Myklebust, Line M. ;
Ree, Rasmus ;
Arnesen, Thomas .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2016, 1864 (10) :1372-1401
[10]   The Absence of PTEN in Breast Cancer Is a Driver of MLN4924 Resistance [J].
Du, Meng-ge ;
Peng, Zhi-qiang ;
Gai, Wen-bin ;
Liu, Fan ;
Liu, Wei ;
Chen, Yu-jiao ;
Li, Hong-chang ;
Zhang, Xin ;
Liu, Cui Hua ;
Zhang, Ling-qiang ;
Jiang, Hong ;
Xie, Ping .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9