Infinitely Many Solutions for Schrödinger-Poisson Systems and Schrödinger-Kirchhoff Equations

被引:0
作者
Liu, Shibo [1 ]
机构
[1] Florida Inst Technol, Dept Math & Syst Engn, Melbourne, FL 32901 USA
关键词
Schr & ouml; dinger equations; Clark's theorem; truncation method; Palais-Smale condition; SCHRODINGER-POISSON SYSTEM;
D O I
10.3390/math12142233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By applying Clark's theorem as altered by Liu and Wang and the truncation method, we obtain a sequence of solutions for a Schr & ouml;dinger-Poisson system -Delta u+V(x)u+phi u=f(u)inR3,-Delta phi=u2inR3 with negative energy. A similar result is also obtained for the Schr & ouml;dinger-Kirchhoff equation as follows:-1+integral RN del u2 Delta u+V(x)u=f(u)u is an element of H1(RN).
引用
收藏
页数:7
相关论文
共 10 条
[1]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[2]   Solitons and the electromagnetic field [J].
Benci, V ;
Fortunato, D ;
Masiello, A ;
Pisani, L .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :73-102
[3]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283
[4]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934
[5]   Multiplicity results for sublinear elliptic equations with sign-changing potential and general nonlinearity [J].
He, Wei ;
Wu, Qingfang .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[6]   Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems [J].
Liu, Shanshan ;
Quek, Siew-Young ;
Huang, Kang .
CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2024, 64 (33) :12574-12598
[7]   On the Schrodinger-Poisson system with indefinite potential and 3-sublinear nonlinearity [J].
Liu, Shibo ;
Mosconi, Sunra .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) :689-712
[8]   On Clark's theorem and its applications to partially sublinear problems [J].
Liu, Zhaoli ;
Wang, Zhi-Qiang .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (05) :1015-1037
[9]  
Wang ZP, 2007, DISCRETE CONT DYN S, V18, P809
[10]   Positive solutions for Schrodinger-Poisson equations with a critical exponent [J].
Zhao, Leiga ;
Zhao, Fukun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2150-2164