Grasp Generation with Depth Estimation from Color Images

被引:0
作者
Van-Thiep Nguyen [1 ]
Van-Duc Vu [1 ]
Ngoc-Anh Hoang [1 ]
Thu-Uyen Nguyen [1 ]
Duy-Quang Vu [1 ]
Duc-Thanh Tran [1 ]
Khanh-Toan Phan [1 ]
Anh-Truong Mai [1 ]
Van-Hiep Duong [1 ]
Cong-Trinh Tran [1 ]
Ngoc-Trung Ho [1 ]
Quang-Tri Duong [1 ]
Phuc-Quan Ngo [1 ]
Dinh-Cuong Hoang [1 ]
机构
[1] FPT Univ, Hanoi, Vietnam
来源
PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024 | 2024年
关键词
Pose estimation; robot vision systems; intelligent systems; deep learning; supervised learning; machine vision;
D O I
10.1145/3654522.3654575
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Grasp generation plays a fundamental role in robot manipulation, often relying on three-dimensional (3D) point cloud data acquired through specialized depth cameras. However, the limited availability of such sensors in practical scenarios emphasizes the necessity for alternative approaches. This paper introduces an innovative method for grasp generation directly from color (RGB) images, negating the reliance on dedicated depth sensors. The proposed method employs tailored deep learning techniques for depth estimation from color images. Instead of traditional depth sensors, our approach computes predicted point clouds from estimated depth images directly generated from RGB inputs. A significant contribution lies in the design of a fusion module adept at seamlessly integrating features extracted from RGB images with those inferred from the predicted point clouds. This fusion process significantly strengthens the grasp generation pipeline by strengthening the advantages of both modalities, yielding notably improved grasp configurations. Experimental evaluations on standard datasets validate the efficacy of our approach, demonstrating its superior performance in generating grasp configurations compared to existing methods.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 44 条
[1]  
Bicchi A., 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P348, DOI 10.1109/ROBOT.2000.844081
[2]   Innovative Methodology for Multi-View Point Cloud Registration in Robotic 3D Object Scanning and Reconstruction [J].
Chen, Liang-Chia ;
Hoang, Dinh-Cuong ;
Lin, Hsien-I ;
Nguyen, Thanh-Hung .
APPLIED SCIENCES-BASEL, 2016, 6 (05)
[3]   Improving Monocular Depth Estimation by Leveraging Structural Awareness and Complementary Datasets [J].
Chen, Tian ;
An, Shijie ;
Zhang, Yuan ;
Ma, Chongyang ;
Wang, Huayan ;
Guo, Xiaoyan ;
Zheng, Wen .
COMPUTER VISION - ECCV 2020, PT XIV, 2020, 12359 :90-108
[4]   Real-World Multiobject, Multigrasp Detection [J].
Chu, Fu-Jen ;
Xu, Ruinian ;
Vela, Patricio A. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :3355-3362
[5]   Object-RPE: Dense 3D Reconstruction and Pose Estimation with Convolutional Neural Networks for Warehouse Robots [J].
Dinh-Cuong Hoang ;
Stoyanov, Todor ;
Lilienthal, Achim J. .
2019 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR), 2019,
[6]   Context-Aware Grasp Generation in Cluttered Scenes [J].
Dinh-Cuong Hoang ;
Stork, Johannes A. ;
Stoyanov, Todor .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, :1492-1498
[7]   Sub-OBB based object recognition and localization algorithm using range images [J].
Dinh-Cuong Hoang ;
Liang-Chia Chen ;
Thanh-Hung Nguyen .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (02)
[8]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, 10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[9]   Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review [J].
Du, Guoguang ;
Wang, Kai ;
Lian, Shiguo ;
Zhao, Kaiyong .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (03) :1677-1734
[10]  
Eigen D, 2014, ADV NEUR IN, V27