A model for predicting post-translational modification cross-talk based on the Multilayer Network

被引:2
作者
Dai, Yuhao [1 ]
Deng, Lei [1 ]
Zhu, Fei [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multilayer Network; Post-translational modification; Cross-talk; Protein-protein interaction; Deep neural network; HISTONE H3; PHOSPHORYLATION; PRIORITIZATION; PROTEINS;
D O I
10.1016/j.eswa.2024.124770
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Post-translational modifications (PTMs) are pivotal in controlling protein function, signaling pathways, and cellular processes, underscoring their importance in biological systems. PTMs not only regulate various signaling pathways by modifying individual residues but also regulate signaling pathways through the interaction of different modified residues within proteins or between proteins, which is known as PTM crosstalk. An in-depth study of the interactions between PTMs can lead to a clearer understanding of the regulatory mechanisms mediated by PTMs. Therefore, accurately identifying potential PTM cross-talk within proteins (Intra PTM cross-talk) or between proteins (Inter PTM cross-talk) is of utmost importance in biological research. In this work, we introduce an innovative approach called WPTCMN/PTCMN for simultaneous prediction of Intra/Inter PTM cross-talk using an integrated deep neural network, which is based on a Multilayer Network. Comprehensive experimental analysis demonstrates that using the Multilayer Network to capture the complex associations between Intra/Inter PTM cross-talk exhibits remarkable superiority in predicting PTM cross-talk. Specifically, the AUC value achieved on Intra PTM cross-talk is 0.924, while on Inter PTM cross-talk it reaches 0.872, surpassing existing methods. Therefore, WPTCMN/PTCMN represents an effective tool for simultaneous prediction of Intra/Inter PTM cross-talk.
引用
收藏
页数:12
相关论文
共 53 条
  • [1] Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices
    Alseekh, Saleh
    Aharoni, Asaph
    Brotman, Yariv
    Contrepois, Kevin
    D'Auria, John
    Ewald, Jan
    Ewald, Jennifer C.
    Fraser, Paul D.
    Giavalisco, Patrick
    Hall, Robert D.
    Heinemann, Matthias
    Link, Hannes
    Luo, Jie
    Neumann, Steffen
    Nielsen, Jens
    de Souza, Leonardo Perez
    Saito, Kazuki
    Sauer, Uwe
    Schroeder, Frank C.
    Schuster, Stefan
    Siuzdak, Gary
    Skirycz, Aleksandra
    Sumner, Lloyd W.
    Snyder, Michael P.
    Tang, Huiru
    Tohge, Takayuki
    Wang, Yulan
    Wen, Weiwei
    Wu, Si
    Xu, Guowang
    Zamboni, Nicola
    Fernie, Alisdair R.
    [J]. NATURE METHODS, 2021, 18 (07) : 747 - 756
  • [2] GeneTIER: prioritization of candidate disease genes using tissue-specific gene expression profiles
    Antanaviciute, Agne
    Daly, Catherine
    Crinnion, Laura A.
    Markham, Alexander F.
    Watson, Christopher M.
    Bonthron, David T.
    Carr, Ian M.
    [J]. BIOINFORMATICS, 2015, 31 (16) : 2728 - 2735
  • [3] Anisotropy of fluctuation dynamics of proteins with an elastic network model
    Atilgan, AR
    Durell, SR
    Jernigan, RL
    Demirel, MC
    Keskin, O
    Bahar, I
    [J]. BIOPHYSICAL JOURNAL, 2001, 80 (01) : 505 - 515
  • [4] Systematic Functional Prioritization of Protein Posttranslational Modifications
    Beltrao, Pedro
    Albanese, Veronique
    Kenner, Lillian R.
    Swaney, Danielle L.
    Burlingame, Alma
    Villen, Judit
    Lim, Wendell A.
    Fraser, James S.
    Frydman, Judith
    Krogan, Nevan J.
    [J]. CELL, 2012, 150 (02) : 413 - 425
  • [5] Bianconi G, 2018, MULTILAYER NETWORKS: STRUCTURE AND FUNCTION, DOI 10.1093/oso/9780198753919.001.0001
  • [6] Siri of the Cell: What Biology Could Learn from the iPhone
    Carvunis, Anne-Ruxandra
    Ideker, Trey
    [J]. CELL, 2014, 157 (03) : 534 - 538
  • [7] Regulating tumor suppressor genes: post-translational modifications
    Chen, Ling
    Liu, Shuang
    Tao, Yongguang
    [J]. SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2020, 5 (01)
  • [8] Large-scale comparative assessment of computational predictors for lysine post-translational modification sites
    Chen, Zhen
    Liu, Xuhan
    Li, Fuyi
    Li, Chen
    Marquez-Lago, Tatiana
    Leier, Andre
    Akutsu, Tatsuya
    Webb, Geoffrey, I
    Xu, Dakang
    Smith, Alexander Ian
    Li, Lei
    Chou, Kuo-Chen
    Song, Jiangning
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2267 - 2290
  • [9] A global genetic interaction network maps a wiring diagram of cellular function
    Costanzo, Michael
    VanderSluis, Benjamin
    Koch, Elizabeth N.
    Baryshnikova, Anastasia
    Pons, Carles
    Tan, Guihong
    Wang, Wen
    Usaj, Matej
    Hanchard, Julia
    Lee, Susan D.
    Pelechano, Vicent
    Styles, Erin B.
    Billmann, Maximilian
    van Leeuwen, Jolanda
    van Dyk, Nydia
    Lin, Zhen-Yuan
    Kuzmin, Elena
    Nelson, Justin
    Piotrowski, Jeff S.
    Srikumar, Tharan
    Bahr, Sondra
    Chen, Yiqun
    Deshpande, Raamesh
    Kurat, Christoph F.
    Li, Sheena C.
    Li, Zhijian
    Usaj, Mojca Mattiazzi
    Okada, Hiroki
    Pascoe, Natasha
    San Luis, Bryan-Joseph
    Sharifpoor, Sara
    Shuteriqi, Emira
    Simpkins, Scott W.
    Snider, Jamie
    Suresh, Harsha Garadi
    Tan, Yizhao
    Zhu, Hongwei
    Malod-Dognin, Noel
    Janjic, Vuk
    Przulj, Natasa
    Troyanskaya, Olga G.
    Stagljar, Igor
    Xia, Tian
    Ohya, Yoshikazu
    Gingras, Anne-Claude
    Raught, Brian
    Boutros, Michael
    Steinmetz, Lars M.
    Moore, Claire L.
    Rosebrock, Adam P.
    [J]. SCIENCE, 2016, 353 (6306)
  • [10] Origin and evolution of pathogenic coronaviruses
    Cui, Jie
    Li, Fang
    Shi, Zheng-Li
    [J]. NATURE REVIEWS MICROBIOLOGY, 2019, 17 (03) : 181 - 192