Edge-Passivated Monolayer WSe2 Nanoribbon Transistors

被引:6
作者
Chen, Sihan [1 ]
Zhang, Yue [2 ]
King, William P. [1 ,2 ,3 ]
Bashir, Rashid [1 ,4 ]
van der Zande, Arend M. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Holonyak Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
基金
美国国家卫生研究院;
关键词
edge passivation; monolayer; nanoribbon; scanning probe lithography; transistors; tungsten oxyselenide; WSe2; TRANSITION; STATES; PHOTOLUMINESCENCE; DEFECTS;
D O I
10.1002/adma.202313694
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling-bond-free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width-scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field-effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated-edge nanoribbon FETs exhibit 10 +/- 6 times higher field-effect mobility than the open-edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation-based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond-silicon electronics and optoelectronics.
引用
收藏
页数:10
相关论文
共 78 条
[1]  
Ajayi O. A., 2017, 2D Mater, V4, DOI DOI 10.1088/2053-1583/AA6AA1
[2]   Near-unity photoluminescence quantum yield in MoS2 [J].
Amani, Matin ;
Lien, Der-Hsien ;
Kiriya, Daisuke ;
Xiao, Jun ;
Azcatl, Angelica ;
Noh, Jiyoung ;
Madhvapathy, Surabhi R. ;
Addou, Rafik ;
Santosh, K. C. ;
Dubey, Madan ;
Cho, Kyeongjae ;
Wallace, Robert M. ;
Lee, Si-Chen ;
He, Jr-Hau ;
Ager, Joel W., III ;
Zhang, Xiang ;
Yablonovitch, Eli ;
Javey, Ali .
SCIENCE, 2015, 350 (6264) :1065-1068
[3]   Strain tuning of excitons in monolayer WSe2 [J].
Aslan, Ozgur Burak ;
Deng, Minda ;
Heinz, Tony F. .
PHYSICAL REVIEW B, 2018, 98 (11)
[4]   Low-Resistance p-Type Ohmic Contacts to Ultrathin WSe2 by Using a Monolayer Dopant [J].
Borah, Abhinandan ;
Nipane, Ankur ;
Choi, Min Sup ;
Hone, James ;
Teherani, James T. .
ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (07) :2941-2947
[5]   The future transistors [J].
Cao, Wei ;
Bu, Huiming ;
Vinet, Maud ;
Cao, Min ;
Takagi, Shinichi ;
Hwang, Sungwoo ;
Ghani, Tahir ;
Banerjee, Kaustav .
NATURE, 2023, 620 (7974) :501-515
[6]   Nanometer-scale capillary-driven flow and molecular weight govern polymer nanostructure deposition from a heated tip [J].
Chen, Sihan ;
King, William P. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (03)
[7]   Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS2 Devices [J].
Chen, Sihan ;
Son, Jangyup ;
Huang, Siyuan ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Bashir, Rashid ;
van der Zande, Arend M. ;
King, William P. .
ACS OMEGA, 2021, 6 (05) :4013-4021
[8]   Monolayer MoS2 Nanoribbon Transistors Fabricated by Scanning Probe Lithography [J].
Chen, Sihan ;
Kim, SunPhil ;
Chen, Weibing ;
Yuan, Jiangtan ;
Bashir, Rashid ;
Lou, Jun ;
van der Zande, Arend M. ;
King, William P. .
NANO LETTERS, 2019, 19 (03) :2092-2098
[9]   Fabrication of MoSe2 nanoribbons via an unusual morphological phase transition [J].
Chen, Yuxuan ;
Cui, Ping ;
Ren, Xibiao ;
Zhang, Chendong ;
Jin, Chuanhong ;
Zhang, Zhenyu ;
Shih, Chih-Kang .
NATURE COMMUNICATIONS, 2017, 8
[10]  
Cheng C. C., 2019, S VLSI TECHN IEEE IN