A multifunctional triboelectric nanogenerator based on PDMS/ MXene for bio-mechanical energy harvesting and volleyball training monitoring

被引:0
|
作者
Yang, Renwei [1 ]
机构
[1] Shanghai Univ Finance & Econ, Minist Publ Fdn, Zhejiang Coll, Jinhua 321013, Peoples R China
关键词
Triboelectric nanogenerators (TENGs); Self-powered sensor; PDMS/MXene; Volleyball training;
D O I
10.1016/j.heliyon.2024.e32361
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Within the domain of wearable devices that are self-powered and sensory, triboelectric nanogenerators (TENGs) have surfaced as a notable solution to meet the growing needs for energy harvesting. This study unveils an innovative wearable and stretchable multifunctional doublelayered TENG, based on PDMS/MXene, known as PM-TENG. Furthermore, PM-TENG can also be used as a joint sensor to monitor the movement of athletes' joints during volleyball training. By augmenting the matrix with PDMS/MXene, which possesses dual capabilities-namely, charge capture and charge movement-the intermediary layer is integrated. This leads to a two fold increase in the ability to trap charges and the overall triboelectric performance. With a power density reaching 11.27 mW, it notably exceeds the performance of its counterparts that solely utilize PDMS, by nearly 11 times. This academic effort elucidates the important role of PM-TENG in biomechanical energy capture and autonomous wearable sports motion sensing.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Development of an Energy Harvesting Tile using Novel MXene-Cement Based Triboelectric Nanogenerator
    Palaniappan, V.
    Adineh, A.
    Maddipatla, D.
    Bazuin, B. J.
    Atashbar, M. Z.
    2023 IEEE SENSORS, 2023,
  • [42] Green Energy Harvesting using a Flexible Bio-triboelectric Nanogenerator
    Agarwal, Shruti
    Mukesh, Panchal Ishit
    Neog, Moitreyam
    Mishra, Subhendu
    Tiwary, Chandra Sekhar
    Singh, Abhishek Kumar
    Kumbhakar, Partha
    JOURNAL OF ELECTRONIC MATERIALS, 2025, 54 (04) : 2821 - 2833
  • [43] Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting
    Xi, Yinhu
    Hua, Jing
    Shi, Yijun
    NANO ENERGY, 2020, 69
  • [44] A Flexible Triboelectric Nanogenerator Based on MXene for Jumping Motion Monitoring
    Yang, Renwei
    Zheng, Zheng
    NANO, 2023, 18 (04)
  • [45] A rotational switched-mode water-based triboelectric nanogenerator for mechanical energy harvesting and vehicle monitoring
    Le, C-D
    Nguyen, T-H
    Vu, D-L
    Vo, C-P
    Ahn, K. K.
    MATERIALS TODAY SUSTAINABILITY, 2022, 19
  • [46] Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device
    Yang, Huake
    Yang, Hongmei
    Lai, Meihui
    Xi, Yi
    Guan, Yuzhu
    Liu, Wenlin
    Zeng, Qixuan
    Lu, Junlin
    Hu, Chenguo
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (02):
  • [47] Triboelectric nanogenerator based wearable energy harvesting devices
    Ding Ya-Fei
    Chen Xiang-Yu
    ACTA PHYSICA SINICA, 2020, 69 (17)
  • [48] Spring Design of Triboelectric Nanogenerator with MXene-Modified Interface for Fluid Energy Harvesting and Water Level Monitoring
    Tao, Yang
    Xiang, Huijing
    Cao, Xia
    Wang, Ning
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (03) : 3406 - 3415
  • [49] Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator
    Yang, Jin
    Chen, Jun
    Yang, Ya
    Zhang, Hulin
    Yang, Weiqing
    Bai, Peng
    Su, Yuanjie
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2014, 4 (06)
  • [50] Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion
    Chen, Hong
    Lu, Qixin
    Cao, Xia
    Wang, Ning
    Wang, Zhonglin
    NANO RESEARCH, 2022, 15 (03) : 2505 - 2511