Morphological profiling for drug discovery in the era of deep learning

被引:3
|
作者
Tang, Qiaosi [1 ]
Ratnayake, Ranjala [2 ]
Seabra, Gustavo [2 ]
Jiang, Zhe [3 ]
Fang, Ruogu [3 ,4 ]
Cui, Lina [2 ]
Ding, Yousong [2 ]
Kahveci, Tamer [3 ]
Bian, Jiang [5 ]
Li, Chenglong [2 ]
Luesch, Hendrik [2 ]
Li, Yanjun [2 ,3 ]
机构
[1] Calico Life Sci, South San Francisco, CA 94080 USA
[2] Univ Florida, Ctr Nat Prod Drug Discovery & Dev, Dept Med Chem, Gainesville, FL 32610 USA
[3] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
[4] Univ Florida, Herbert Wertheim Coll Engn, J Crayton Pruitt Family Dept Biomed Engn, Gainesville, FL 32611 USA
[5] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL 32611 USA
关键词
artificial intelligence; deep learning; morphological profiling; drug discovery; NUCLEUS SEGMENTATION; IN-VITRO; ASSAY; METABOLOMICS; NETWORKS; PLATFORM; IMAGES;
D O I
10.1093/bib/bbae284
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Morphological profiling is a valuable tool in phenotypic drug discovery. The advent of high-throughput automated imaging has enabled the capturing of a wide range of morphological features of cells or organisms in response to perturbations at the single-cell resolution. Concurrently, significant advances in machine learning and deep learning, especially in computer vision, have led to substantial improvements in analyzing large-scale high-content images at high throughput. These efforts have facilitated understanding of compound mechanism of action, drug repurposing, characterization of cell morphodynamics under perturbation, and ultimately contributing to the development of novel therapeutics. In this review, we provide a comprehensive overview of the recent advances in the field of morphological profiling. We summarize the image profiling analysis workflow, survey a broad spectrum of analysis strategies encompassing feature engineering- and deep learning-based approaches, and introduce publicly available benchmark datasets. We place a particular emphasis on the application of deep learning in this pipeline, covering cell segmentation, image representation learning, and multimodal learning. Additionally, we illuminate the application of morphological profiling in phenotypic drug discovery and highlight potential challenges and opportunities in this field.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] A Conceptual Deep Learning Framework for COVID-19 Drug Discovery
    Jamshidi, Mohammad
    Talla, Jakub
    Lalbakhsh, Ali
    Sharifi-Atashgah, Maryam S.
    Sabet, Asal
    Peroutka, Zdenek
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 30 - 34
  • [12] The power of deep learning to ligand-based novel drug discovery
    Baskin, Igor I.
    EXPERT OPINION ON DRUG DISCOVERY, 2020, 15 (07) : 755 - 764
  • [13] An algorithm for drug discovery based on deep learning with an example of developing a drug for the treatment of lung cancer
    Chebanov, Dmitrii K.
    Misyurin, Vsevolod A.
    Shubina, Irina Zh.
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [14] Deep learning tools for advancing drug discovery and development
    Sagorika Nag
    Anurag T. K. Baidya
    Abhimanyu Mandal
    Alen T. Mathew
    Bhanuranjan Das
    Bharti Devi
    Rajnish Kumar
    3 Biotech, 2022, 12
  • [15] Geometric deep learning for drug discovery
    Liu, Mingquan
    Li, Chunyan
    Chen, Ruizhe
    Cao, Dongsheng
    Zeng, Xiangxiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [16] Deep learning in drug discovery: a futuristic modality to materialize the large datasets for cheminformatics
    Raza, Ali
    Chohan, Talha Ali
    Buabeid, Manal
    Arafa, El-Shaima A.
    Chohan, Tahir Ali
    Fatima, Batool
    Sultana, Kishwar
    Ullah, Malik Saad
    Murtaza, Ghulam
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (18) : 9177 - 9192
  • [17] Generative chemistry: drug discovery with deep learning generative models
    Yuemin Bian
    Xiang-Qun Xie
    Journal of Molecular Modeling, 2021, 27
  • [18] A compact review of progress and prospects of deep learning in drug discovery
    Li, Huijun
    Zou, Lin
    Kowah, Jamal Alzobair Hammad
    He, Dongqiong
    Liu, Zifan
    Ding, Xuejie
    Wen, Hao
    Wang, Lisheng
    Yuan, Mingqing
    Liu, Xu
    JOURNAL OF MOLECULAR MODELING, 2023, 29 (04)
  • [19] A compact review of progress and prospects of deep learning in drug discovery
    Huijun Li
    Lin Zou
    Jamal Alzobair Hammad Kowah
    Dongqiong He
    Zifan Liu
    Xuejie Ding
    Hao Wen
    Lisheng Wang
    Mingqing Yuan
    Xu Liu
    Journal of Molecular Modeling, 2023, 29
  • [20] AlphaFold: Deep Learning, Drug Discovery and the Protein Structure Revolution
    Baker, Christopher M.
    Atzori, Alessio
    CHIMIA, 2022, 76 (04) : 364 - 366