Positive-Negative Tunable Coefficients of Friction in Superlubric Contacts

被引:3
作者
Wu, Zhanghui [1 ,2 ]
Li, Xuanhe [1 ,3 ]
Peng, Deli [1 ,2 ,4 ]
Zheng, Quanshui [1 ,2 ,4 ,5 ]
机构
[1] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Tsinghua Univ Shenzhen, Res Inst, Inst Superlubr Technol, Shenzhen 518057, Peoples R China
[5] Tsinghua Shenzhen Int Grad Sch, Ctr Double Helix, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
WEAR-RESISTANCE; GRAPHENE; GRAPHITE; NANOSCALE; ADHESION; MONOLAYER;
D O I
10.1103/PhysRevLett.132.156201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In conventional systems, the coefficient of friction (COF) is typically positive, signifying a direct relationship between frictional and normal forces. Contrary to this, we observe that the load dependence of friction exhibits a unique bell-shaped curve when studying the frictional properties between graphite and alpha-Al2O3 surfaces. As the applied normal force increases, the friction initially rises and then decreases. Finite element simulations reveal this behavior is due to edge detachment at the graphite/alpha-Al2O3 interface as the normal force approaches a critical value. Because friction in superlubric contacts predominantly arises from edges, their detachment leads to a decrease in overall friction. We empirically validate these findings by varying the radii of curvature of the tips and the thicknesses of graphite flakes. This unprecedented observation offers a new paradigm for tuning COF in superlubric applications, enabling transitions from positive to negative values.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Friction of Ionic Liquid-Glycol Ether Mixtures at Titanium Interfaces: Negative Load Dependence [J].
An, Rong ;
Zhou, Guobing ;
Zhu, Yudan ;
Zhu, Wei ;
Huang, Liangliang ;
Shah, Faiz Ullah .
ADVANCED MATERIALS INTERFACES, 2018, 5 (14)
[2]  
aps, About us, DOI [10.1103/PhysRevLett.132.156201, DOI 10.1103/PHYSREVLETT.132.156201]
[3]   Designing metainterfaces with specified friction laws [J].
Aymard, Antoine ;
Delplanque, Emilie ;
Dalmas, Davy ;
Scheibert, Julien .
SCIENCE, 2024, 383 (6679) :200-204
[4]   Macroscale superlubricity enabled by graphene nanoscroll formation [J].
Berman, Diana ;
Deshmukh, Sanket A. ;
Sankaranarayanan, Subramanian K. R. S. ;
Erdemir, Ali ;
Sumant, Anirudha V. .
SCIENCE, 2015, 348 (6239) :1118-1122
[5]   Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer [J].
Berman, Diana ;
Deshmukh, Sanket A. ;
Sankaranarayanan, Subramanian K. R. S. ;
Erdemir, Ali ;
Sumant, Anirudha V. .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (42) :6640-6646
[6]   A general equation for fitting contact area and friction vs load measurements [J].
Carpick, RW ;
Ogletree, DF ;
Salmeron, M .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 211 (02) :395-400
[7]   Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope [J].
Carpick, RW ;
Agrait, N ;
Ogletree, DF ;
Salmeron, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02) :1289-1295
[8]   Scratching the surface: Fundamental investigations of tribology with atomic force microscopy [J].
Carpick, RW ;
Salmeron, M .
CHEMICAL REVIEWS, 1997, 97 (04) :1163-1194
[9]   Unconventional Behavior of Friction at the Nanoscale beyond Amontons' Law [J].
Chen, Jingrun ;
Gao, Wang .
CHEMPHYSCHEM, 2017, 18 (15) :2033-2039
[10]   Friction at single-layer graphene step edges due to chemical and topographic interactions [J].
Chen, Lei ;
Chen, Zhe ;
Tang, Xiaoyu ;
Yan, Wenmeng ;
Zhou, Zhongrong ;
Qian, Linmao ;
Kim, Seong H. .
CARBON, 2019, 154 :67-73