Anisotropic obstacle Neumann problems in weighted Sobolev spaces and variable exponent

被引:0
作者
Zineddaine, Ghizlane [1 ]
Sabiry, Abdelaziz [1 ]
Melliani, Said [1 ]
Kassidi, Abderrazak [1 ]
机构
[1] Sultan Moulay Slimane Univ, Beni Mellal, Morocco
关键词
Monotonicity method; Neumann boundary conditions; entropy solutions; EQUATIONS; REGULARITY; EXISTENCE;
D O I
10.1515/jaa-2024-0023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we focus on a certain class of anisotropic obstacle problems governed by a Leray-Lions operator. This problem is subject to homogeneous Neumann boundary conditions. By applying truncation techniques and the monotonicity method, we establish the existence of entropy solutions for the problem studied in the framework of anisotropic weighted Sobolev spaces with variable exponent.
引用
收藏
页数:16
相关论文
共 22 条
  • [1] Abbassi Adil, 2021, Nonlinear Analysis: Problems, Applications and Computational Methods. Lecture Notes in Networks and Systems (LNNS 168), P102, DOI 10.1007/978-3-030-62299-2_8
  • [2] Abbassi A., 2017, Adv. Sci. Technol. Eng. Syst. J, V2, P45
  • [3] Existence of Entropy Solutions of the Anisotropic Elliptic Nonlinear Problem with Measure Data in Weighted Sobolev Space
    Abbassi, Adil
    Allalou, Chakir
    Kassidi, Abderrazak
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [4] Anisotropic Elliptic Nonlinear Obstacle Problem with Weighted Variable Exponent
    Abbassi, Adil
    Allalou, Chakir
    Kassidi, Abderrazak
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2021, 54 (04) : 337 - 356
  • [5] Akdim Y, 2001, ELECTRON J DIFFER EQ
  • [6] Antontsev S. N., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat., V52, P19, DOI [10.1007/s11565-006-0002-9, DOI 10.1007/S11565-006-0002-9]
  • [7] Azroul E., 2021, SEMA J, V78, P475, DOI DOI 10.1007/S40324-021-00247-0
  • [8] Bnilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
  • [9] Boccardo L., 1996, DIFFER INTEGRAL EQU, V9, P209, DOI DOI 10.57262/DIE/1367969997
  • [10] Brezis H., 1992, Analyse fonctionnelle