A review of deep learning methods for ligand based drug virtual screening

被引:14
作者
Wu, Hongjie [1 ]
Liu, Junkai [1 ]
Zhang, Runhua [1 ]
Lu, Yaoyao [1 ]
Cui, Guozeng [1 ]
Cui, Zhiming [1 ]
Ding, Yijie [2 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, Suzhou 215009, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Peoples R China
来源
FUNDAMENTAL RESEARCH | 2024年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
Virtual screening; Deep learning; Drug discovery; Drug-target interaction; Drug-target affinity; PROTEIN INTERACTION PREDICTION; NEURAL-NETWORK; LANGUAGE; INFORMATION; SETS;
D O I
10.1016/j.fmre.2024.02.011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
引用
收藏
页码:715 / 737
页数:23
相关论文
共 140 条
[1]   Deep Learning in Drug Target Interaction Prediction: Current and Future Perspectives [J].
Abbasi, Karim ;
Razzaghi, Parvin ;
Poso, Antti ;
Ghanbari-Ara, Saber ;
Masoudi-Nejad, Ali .
CURRENT MEDICINAL CHEMISTRY, 2021, 28 (11) :2100-2113
[2]   Computational/in silico methods in drug target and lead prediction [J].
Agamah, Francis E. ;
Mazandu, Gaston K. ;
Hassan, Radia ;
Bope, Christian D. ;
Thomford, Nicholas E. ;
Ghansah, Anita ;
Chimusa, Emile R. .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) :1663-1675
[3]   AlphaFold at CASP13 [J].
AlQuraishi, Mohammed .
BIOINFORMATICS, 2019, 35 (22) :4862-4865
[4]  
Anand N, 2018, ADV NEUR IN, V31
[5]   SMILES-based deep generative scaffold decorator for de-novo drug design [J].
Arus-Pous, Josep ;
Patronov, Atanas ;
Bjerrum, Esben Jannik ;
Tyrchan, Christian ;
Reymond, Jean-Louis ;
Chen, Hongming ;
Engkvist, Ola .
JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
[6]  
Bagherian M, 2021, BRIEF BIOINFORM, V22, P247, DOI 10.1093/bib/bbz157
[7]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[8]   Learning the protein language: Evolution, structure, and function [J].
Bepler, Tristan ;
Berger, Bonnie .
CELL SYSTEMS, 2021, 12 (06) :654-+
[9]   An overview of drug discovery and development [J].
Berdigaliyev, Nurken ;
Aljofan, Mohamad .
FUTURE MEDICINAL CHEMISTRY, 2020, 12 (10) :939-947
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242