Quasi-LPV Modeling and H∞ Gain-Scheduled State-Feedback Control Applied to a Control Moment Gyroscope

被引:0
作者
Neves, Gabriel P. [1 ]
Angelico, Bruno A. [2 ]
Oliveira, Ricardo C. L. F. [3 ]
机构
[1] Insper Teaching & Res Inst, BR-04546042 Sao Paulo, Brazil
[2] Univ Estadual Campinas UNICAMP, Fac Engn Eletr & Comp, BR-13083852 Campinas, Brazil
[3] Univ Estadual Campinas UNICAMP, Fac Engn Elect & Comp, BR-13083852 Campinas, Brazil
基金
巴西圣保罗研究基金会;
关键词
Polynomials; Vectors; Numerical models; Mathematical models; Gyroscopes; Computational modeling; Mechatronics; Switches; Stability criteria; Numerical stability; H-infinity norm; control moment gyroscope (CMG); gain-scheduled control; linear matrix inequality (LMI); quasi-linear parameter-varying (quasi-LPV); TIME-SYSTEMS; PARAMETER; STABILITY; DESIGN; LMIS;
D O I
10.1109/TMECH.2024.3457585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents two contributions for ad-dressing continuous-time linear parameter-varying (LPV)systems with parameters characterized by bounded variation rates. The first contribution introduces a novel procedure for designing a polynomial quasi-LPV model applicable to a class of nonlinear systems. This method takes into account multiple operating conditions and yields a quasi-LPV model suitable for addressing tracking problems with-out the need for the inclusion of integrators. The second contribution proposes a novel H(infinity )gain-scheduled state-feedback design condition. This technique is formulated using linear matrix inequalities in conjunction with a search for a bounded scalar parameter, which is beneficial for obtaining controllers that offer improved performance. Both the modeling and control design strategies are validated through practical applications involving a control moment gyroscope
引用
收藏
页数:10
相关论文
共 41 条
[1]  
Abbas HS, 2013, P AMER CONTR CONF, P6841
[2]   LPV state-feedback control of a control moment gyroscope [J].
Abbas, Hossam Seddik ;
Ali, Ahsan ;
Hashemi, Seyed Mahdi ;
Werner, Herbert .
CONTROL ENGINEERING PRACTICE, 2014, 24 :129-137
[3]   Algorithm 998: The Robust LMI Parser-A Toolbox to Construct LMI Conditions for Uncertain Systems [J].
Agulhari, Cristiano M. ;
Felipe, Alexandre ;
Oliveira, Ricardo C. L. F. ;
Peres, Pedro L. D. .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2019, 45 (03)
[4]  
Andersen E.D., 2000, HIGH PERFORMANCE OPT, P197, DOI [DOI 10.1007/978-1-4757-3216-0_8, 10.1007/978-1-4757-3216-0, DOI 10.1007/978-1-4757-3216-0]
[5]   On Guaranteeing Convergence of Discrete LQG/LTR When Augmenting It With Forward PI Controllers [J].
Angelico, Bruno Augusto ;
Toriumi, Fabio Yukio ;
Barbosa, Fernando dos Santos ;
das Neves, Gabriel Pereira .
IEEE ACCESS, 2017, 5 :27203-27210
[6]   Advanced gain-scheduling techniques for uncertain systems [J].
Apkarian, P ;
Adams, RJ .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 1998, 6 (01) :21-32
[7]   A CONVEX CHARACTERIZATION OF GAIN-SCHEDULED H-INFINITY CONTROLLERS [J].
APKARIAN, P ;
GAHINET, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (05) :853-864
[8]   SELF-SCHEDULED H-INFINITY CONTROL OF LINEAR PARAMETER-VARYING SYSTEMS - A DESIGN EXAMPLE [J].
APKARIAN, P ;
GAHINET, P ;
BECKER, G .
AUTOMATICA, 1995, 31 (09) :1251-1261
[9]   Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models [J].
Bianchi, FD ;
Mantz, RJ ;
Christiansen, CF .
CONTROL ENGINEERING PRACTICE, 2005, 13 (02) :247-255
[10]  
Boyd S., 1994, LINEAR MATRIX INEQUA