Raman spectroscopy capabilities for advanced semiconductor technology devices

被引:2
作者
Nuytten, Thomas [1 ]
Bogdanowicz, Janusz [1 ]
Sergeant, Stefanie [1 ]
Fleischmann, Claudia [1 ,2 ]
机构
[1] IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron, Quantum Solid State Phys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
关键词
STRAIN;
D O I
10.1063/5.0219438
中图分类号
O59 [应用物理学];
学科分类号
摘要
In semiconductor processing and metrology, Raman spectroscopy is a valuable characterization tool because of its nondestructive nature, high throughput, and versatility in terms of parameter sensitivity. However, with the miniaturization of semiconductor devices, the inherent diffraction limit of the optical technique becomes a roadblock. In order to re-enable the strengths of Raman spectroscopy at the nanometer scale, we exploit polarization-induced enhancement effects that focus the excitation light into the region of interest, without the need for external probes or particles. This allows the detection of structures with dimensions far smaller than the excitation wavelength, unlocking the strengths of Raman spectroscopy at the nanoscale for, e.g., stress and composition measurements. Moreover, under these conditions the experiment probes the totality of the materials stack and we show how this transforms the technique into a volumetric and geometric measurement. The result is a completely new application domain for Raman spectroscopy as a critical dimensional metrology toolkit for a wide variety of semiconducting and metallic materials. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:5
相关论文
共 22 条
  • [1] Analysis of strain and intermixing in single-layer Ge/Si quantum dots using polarized Raman spectroscopy
    Baranov, AV
    Fedorov, AV
    Perova, TS
    Moore, RA
    Yam, V
    Bouchier, D
    Le Thanh, V
    Berwick, K
    [J]. PHYSICAL REVIEW B, 2006, 73 (07):
  • [2] Metal, dielectric and hybrid nanoantennas for enhancing the emission of single quantum dots: A comparative study
    Barreda, A.
    Hell, S.
    Weissflog, M. A.
    Minovich, A.
    Pertsch, T.
    Staude, I
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 276 (276)
  • [3] Nanofocusing of light into semiconducting fin photonic crystals
    Bogdanowicz, J.
    Nuytten, T.
    Gawlik, A.
    Schulze, A.
    De Wolf, I.
    Vandervorst, W.
    [J]. APPLIED PHYSICS LETTERS, 2016, 108 (08)
  • [4] Bogdanowicz J., 2021, P SPIE
  • [5] Taming the Distribution of Light in Gate-All-Around Semiconductor Devices
    Bogdanowicz, Janusz
    Nuytten, Thomas
    Gawlik, Andrzej
    Sergeant, Stefanie
    Oniki, Yusuke
    Gowda, Pallavi Puttarame
    Mertens, Hans
    Charley, Anne-Laure
    [J]. NANO LETTERS, 2024, 24 (04) : 1191 - 1196
  • [6] De Wolf I., 2018, ECS T, V86, P397, DOI [10.1149/08607.0397ecst, DOI 10.1149/08607.0397ECST]
  • [7] Relation between Raman frequency and triaxial stress in Si for surface and cross-sectional experiments in microelectronics components
    De Wolf, Ingrid
    [J]. JOURNAL OF APPLIED PHYSICS, 2015, 118 (05)
  • [8] A LATTICE THEORY OF MORPHIC EFFECTS IN CRYSTALS OF DIAMOND STRUCTURE
    GANESAN, S
    MARADUDI.AA
    OITMAA, J
    [J]. ANNALS OF PHYSICS, 1970, 56 (02) : 556 - &
  • [9] Critical dimension metrology using Raman spectroscopy
    Gawlik, Andrzej
    Bogdanowicz, Janusz
    Nuytten, Thomas
    Charley, Anne-Laure
    Teugels, Lieve
    Misiewicz, Jan
    Vandervorst, Wilfried
    [J]. APPLIED PHYSICS LETTERS, 2020, 117 (04)
  • [10] Buried Power Rail Integration with Si FinFETs for CMOS Scaling beyond the 5 nm Node
    Gupta, A.
    Mertens, H.
    Tao, Z.
    Demuynck, S.
    Bommels, J.
    Arutchelvan, G.
    Devriendt, K.
    Pedreira, O. Varela
    Ritzenthaler, R.
    Wang, S.
    Radisic, D.
    Kenis, K.
    Teugels, L.
    Sebaai, F.
    Lorant, C.
    Jourdan, N.
    Chan, B. T.
    Zahedmanesh, H.
    Subramanian, S.
    Schleicher, F.
    Hopf, T.
    Peter, A.
    Rassoul, N.
    Debruyn, H.
    Demonie, I
    Siew, Y.
    Chiarella, T.
    Briggs, B.
    Zhou, D.
    Rosseel, E.
    De Keersgieter, A.
    Capogreco, E.
    Litta, E. Dentoni
    Boccardi, G.
    Baudot, S.
    Mannaert, G.
    Bontemps, N.
    Sepulveda, A.
    Mertens, S.
    Kim, M. S.
    Dupuy, E.
    Vandersmissen, K.
    Paolillo, S.
    Yakimets, D.
    Chehab, B.
    Favia, P.
    Drijbooms, C.
    Cousserier, J.
    Jaysankar, M.
    Lazzarino, F.
    [J]. 2020 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, 2020,