Individualized multi-modal MRI biomarkers predict 1-year clinical outcome in first-episode drug-naïve schizophrenia patients

被引:0
作者
Zhang, Aoxiang [1 ,2 ]
Yao, Chenyang [1 ,2 ,3 ]
Zhang, Qian [1 ,2 ]
Zhao, Ziyuan [1 ,2 ]
Qu, Jiao [1 ,2 ]
Lui, Su [1 ,4 ,5 ]
Zhao, Youjin [1 ,2 ,4 ,5 ]
Gong, Qiyong [1 ,6 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
[2] Chinese Acad Med Sci, Res Unit Psychoradiol, Chengdu, Peoples R China
[3] Capital Med Univ, Xuanwu Hosp, Dept Radiol & Nucl Med, Beijing, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Radiol, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu, Peoples R China
[5] Sichuan Univ, West China Hosp, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu, Peoples R China
[6] Sichuan Univ, Dept Radiol, West China Xiamen Hosp, Xiamen, Fujian, Peoples R China
来源
FRONTIERS IN PSYCHIATRY | 2024年 / 15卷
基金
中国国家自然科学基金;
关键词
antipsychotic medication; individualized imaging biomarker; machine learning; schizophrenia; treatment-resistant; TARGET DETECTION; DEFAULT MODE; NETWORKS; RESISTANT; ATTENTION; CORTEX;
D O I
10.3389/fpsyt.2024.1448145
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background Antipsychotic medications offer limited long-term benefit to about 30% of patients with schizophrenia. We aimed to explore the individual-specific imaging markers to predict 1-year treatment response of schizophrenia.Methods Structural morphology and functional topological features related to treatment response were identified using an individualized parcellation analysis in conjunction with machine learning (ML). We performed dimensionality reductions using the Pearson correlation coefficient and three feature selection analyses and classifications using 10 ML classifiers. The results were assessed through a 5-fold cross-validation (training and validation cohorts, n = 51) and validated using the external test cohort (n = 17).Results ML algorithms based on individual-specific brain network proved more effective than those based on group-level brain network in predicting outcomes. The most predictive features based on individual-specific parcellation involved the GMV of the default network and the degree of the control, limbic, and default networks. The AUCs for the training, validation, and test cohorts were 0.947, 0.939, and 0.883, respectively. Additionally, the prediction performance of the models constructed by the different feature selection methods and classifiers showed no significant differences.Conclusion Our study highlighted the potential of individual-specific network parcellation in treatment resistant schizophrenia prediction and underscored the crucial role of feature attributes in predictive model accuracy.
引用
收藏
页数:12
相关论文
共 65 条
  • [21] Forty-five years of split-brain research and still going strong
    Gazzaniga, MS
    [J]. NATURE REVIEWS NEUROSCIENCE, 2005, 6 (08) : 653 - U1
  • [22] Precision Functional Mapping of Individual Human Brains
    Gordon, Evan M.
    Laumann, Timothy O.
    Gilmore, Adrian W.
    Newbold, Dillan J.
    Greene, Deanna J.
    Berg, Jeffrey J.
    Ortega, Mario
    Hoyt-Drazen, Catherine
    Gratton, Caterina
    Sun, Haoxin
    Hampton, Jacqueline M.
    Coalson, Rebecca S.
    Nguyen, Annie L.
    McDermott, Kathleen B.
    Shimony, Joshua S.
    Snyder, Abraham Z.
    Schlaggar, Bradley L.
    Petersen, Steven E.
    Nelson, Steven M.
    Dosenbach, Nico U. F.
    [J]. NEURON, 2017, 95 (04) : 791 - +
  • [23] Relapse in schizophrenia: Is there a relationship to substance abuse?
    Gupta, S
    Hendricks, S
    Kenkel, AM
    Bhatia, SC
    Haffke, EA
    [J]. SCHIZOPHRENIA RESEARCH, 1996, 20 (1-2) : 153 - 156
  • [24] Why did European Radiology reject my radiomic biomarker paper? How to correctly evaluate imaging biomarkers in a clinical setting
    Halligan, Steve
    Menu, Yves
    Mallett, Sue
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (12) : 9361 - 9368
  • [25] Altered engagement of attention and default networks during target detection in schizophrenia
    Hasenkamp, Wendy
    James, G. Andrew
    Boshoven, William
    Duncan, Erica
    [J]. SCHIZOPHRENIA RESEARCH, 2011, 125 (2-3) : 169 - 173
  • [26] Adult outcomes of child- and adolescent-onset schizophrenia: Diagnostic stability and predictive validity
    Hollis, C
    [J]. AMERICAN JOURNAL OF PSYCHIATRY, 2000, 157 (10) : 1652 - 1659
  • [27] Altered default mode network activity and cortical thickness as vulnerability indicators for SCZ: a preliminary resting state MRI study
    Jamea, A. A.
    Alblowi, M.
    Alghamdi, J.
    Alosaimi, F. D.
    Albadr, F.
    Abualait, T.
    Bashir, S.
    [J]. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2021, 25 (02) : 669 - 677
  • [28] A comparison of machine learning methods for classification using simulation with multiple real data examples from mental health studies
    Khondoker, Mizanur
    Dobson, Richard
    Skirrow, Caroline
    Simmons, Andrew
    Stahl, Daniel
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 1804 - 1823
  • [29] Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion
    Kong, Ru
    Li, Jingwei
    Orban, Csaba
    Sabuncu, Mert R.
    Liu, Hesheng
    Schaefer, Alexander
    Sun, Nanbo
    Zuo, Xi-Nian
    Holmes, Avram J.
    Eickhoff, Simon B.
    Yeo, B. T. Thomas
    [J]. CEREBRAL CORTEX, 2019, 29 (06) : 2533 - 2551
  • [30] Predicting individual improvement in schizophrenia symptom severity at 1-year follow-up: Comparison of connectomic, structural, and clinical predictors
    Kottaram, Akhil
    Johnston, Leigh A.
    Tian, Ye
    Ganella, Eleni P.
    Laskaris, Liliana
    Cocchi, Luca
    McGorry, Patrick
    Pantelis, Christos
    Kotagiri, Ramamohanarao
    Cropley, Vanessa
    Zalesky, Andrew
    [J]. HUMAN BRAIN MAPPING, 2020, 41 (12) : 3342 - 3357