Single-Cell Gene-Regulatory Networks of Advanced Symptomatic Atherosclerosis

被引:7
|
作者
Mocci, Giuseppe [1 ]
Sukhavasi, Katyayani [2 ,3 ,4 ]
Ord, Tiit [5 ]
Bankier, Sean [6 ]
Singha, Prosanta [5 ]
Arasu, Uma Thanigai [5 ]
Agbabiaje, Olayinka Oluwasegun [5 ]
Makinen, Petri [5 ]
Ma, Lijiang [7 ]
Hodonsky, Chani J. [8 ,9 ]
Aherrahrou, Redouane [9 ,10 ]
Muhl, Lars [1 ]
Liu, Jianping [1 ]
Gustafsson, Sonja [1 ]
Byandelger, Byambajav [1 ]
Wang, Ying [11 ,12 ]
Koplev, Simon [7 ,13 ]
Lendahl, Urban [1 ]
Owens, Gary K. [8 ]
Leeper, Nicholas J. [11 ,12 ]
Pasterkamp, Gerard [14 ,15 ]
Vanlandewijck, Michael [1 ]
Michoel, Tom [6 ]
Ruusalepp, Arno [2 ,3 ,4 ]
Hao, Ke [7 ]
Yla-Herttuala, Seppo [5 ]
Vali, Marika [16 ,17 ]
Jarve, Heli [2 ,3 ,4 ]
Mokry, Michal [5 ,14 ]
Civelek, Mete [9 ,10 ]
Miller, Clint J. [8 ]
Kovacic, Jason C. [18 ,19 ,20 ]
Kaikkonen, Minna U. [5 ]
Betsholtz, Christer [1 ,16 ]
Bjorkegren, Johan L. M. [1 ,7 ,21 ]
机构
[1] Karolinska Inst, Dept Med, Huddinge, Sweden
[2] Tartu Univ Hosp, Dept Cardiac Surg, Tartu, Estonia
[3] Tartu Univ Hosp, Heart Clin, Tartu, Estonia
[4] Tartu Univ, Inst Clin Med, Dept Cardiol, Tartu, Estonia
[5] Univ Eastern Finland, AI Virtanen Inst Mol Sci, Kuopio, Finland
[6] Univ Bergen, Dept Informat, Computat Biol Unit, Bergen, Norway
[7] Icahn Sch Med Mt Sinai, Inst Genom & Multiscale Biol, Dept Genet & Genom Sci, New York, NY 10029 USA
[8] Univ Virginia, Robert M Berne Cardiovasc Res Ctr, Charlottesville, VA USA
[9] Univ Virginia, Ctr Publ Hlth Genom, Charlottesville, VA USA
[10] Univ Virginia, Dept Biomed Engn, Charlottesville, VA USA
[11] Stanford Univ, Sch Med, Dept Surg, Div Vasc Surg, Stanford, CA USA
[12] Stanford Univ, Stanford Cardiovasc Inst, Stanford, CA USA
[13] Univ Cambridge, Canc Res UK Cambridge Inst, Li Ka Shing Ctr, Cambridge, England
[14] Univ Med Ctr Utrecht, Lab Expt Cardiol, Utrecht, Netherlands
[15] Univ Med Ctr Utrecht, Cent Diag Lab, Utrecht, Netherlands
[16] Uppsala Univ, Rudbeck Lab, Dept Immunol Genet & Pathol, Uppsala, Sweden
[17] Univ Tartu, Inst Biomed & Translat Med, Dept Pathol Anat & Forens Med, Tartu, Estonia
[18] Icahn Sch Med Mt Sinai, Cardiovasc Res Inst, New York, NY USA
[19] Victor Chang Cardiac Res Inst, Darlinghurst, Australia
[20] Univ NSW, St Vincents Clin Sch, Sydney, Australia
[21] Clin Gene Networks AB, Stockholm, Sweden
基金
欧洲研究理事会; 芬兰科学院; 瑞典研究理事会; 美国国家卫生研究院;
关键词
coronary artery disease; gene expression; lipoportein; macrophages; subcutaneous fat; RNA-SEQ; MACROPHAGES; PROVIDES;
D O I
10.1161/CIRCRESAHA.123.323184
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND:While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood.METHODS:Single-cell RNA sequencing data generated with SmartSeq2 (approximate to 8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study.RESULTS:Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs.CONCLUSIONS:By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.
引用
收藏
页码:1405 / 1423
页数:19
相关论文
共 50 条
  • [1] Single-Cell Chromatin and Gene-Regulatory Dynamics of Mouse Nephron Progenitors
    Hilliard, Sylvia
    Tortelote, Giovane
    Liu, Hongbing
    Chen, Chao-Hui
    El-Dahr, Samir S.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (07): : 1308 - 1322
  • [2] Gene-regulatory therapy of atherosclerosis
    Frolkis, VV
    Novikova, SN
    ATHEROSCLEROSIS, 1999, 144 : 204 - 204
  • [3] Gene-regulatory network analysis of ankylosing spondylitis with a single-cell chromatin accessible assay
    Haiyan Yu
    Hongwei Wu
    Fengping Zheng
    Chengxin Zhu
    Lianghong Yin
    Weier Dai
    Dongzhou Liu
    Donge Tang
    Xiaoping Hong
    Yong Dai
    Scientific Reports, 10
  • [4] Gene-regulatory network analysis of ankylosing spondylitis with a single-cell chromatin accessible assay
    Yu, Haiyan
    Wu, Hongwei
    Zheng, Fengping
    Zhu, Chengxin
    Yin, Lianghong
    Dai, Weier
    Liu, Dongzhou
    Tang, Donge
    Hong, Xiaoping
    Dai, Yong
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution
    Trevino, Alexandro E.
    Mueller, Fabian
    Andersen, Jimena
    Sundaram, Laksshman
    Kathiria, Arwa
    Shcherbina, Anna
    Farh, Kyle
    Chang, Howard Y.
    Pasca, Anca M.
    Kundaje, Anshul
    Pasca, Sergiu P.
    Greenleaf, William J.
    CELL, 2021, 184 (19) : 5053 - +
  • [6] Supervised inference of gene-regulatory networks
    To, Cuong C.
    Vohradsky, Jiri
    BMC BIOINFORMATICS, 2008, 9 (1)
  • [7] Gene-regulatory networks in trichome morphogenesis
    Buescher, M.
    Chin, J.
    Chen, Y.
    Cohen, S.
    DIFFERENTIATION, 2010, 80 : S51 - S51
  • [8] Depicting pseudotime-lagged causality across single-cell trajectories for accurate gene-regulatory inference
    Reagor, Caleb C.
    Velez-Angel, Nicolas
    Hudspeth, A. J.
    PNAS NEXUS, 2023, 2 (04):
  • [9] Supervised inference of gene-regulatory networks
    Cuong C To
    Jiri Vohradsky
    BMC Bioinformatics, 9
  • [10] Single-cell pluripotency regulatory networks
    Stumpf, Patrick S.
    Ewing, Rob
    MacArthur, Ben D.
    PROTEOMICS, 2016, 16 (17) : 2303 - 2312