Advancing the Hydrate-Based CO2 Separation Process by Implementing Spectroscopic Analysis and Process Simulation

被引:0
|
作者
Go, Woojin [1 ]
Jung, Jongyeon [1 ]
Park, Myungchul [1 ,2 ]
Sohn, Young Hoon [1 ]
Lim, Junkyu [3 ]
Seo, Yongwon [3 ,4 ]
Seo, Yutaek [1 ]
机构
[1] Seoul Natl Univ, Res Inst Marine Syst Engn RIMSE, Coll Engn, Dept Naval Architecture & Ocean Engn, Seoul 08826, South Korea
[2] HD Korea Shipbuilding & Offshore Engn, Digital Technol Res Inst, Seongnam 13553, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Civil Urban Earth & Environm Engn, Ulsan 44919, South Korea
[4] Ulsan Natl Inst Sci & Technol, Grad Sch Carbon Neutral, Ulsan 44919, South Korea
关键词
GAS-MIXTURES; DISSOCIATION ENTHALPIES; CARBON-DIOXIDE; FLUE-GAS; HFC-134A; CAPTURE; SYSTEMS; EQUILIBRIUM;
D O I
10.1021/acs.energyfuels.4c03766
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The quest for environmentally sustainable solutions for CO2 recovery and purification has led to the development of innovative separation techniques, which are crucial for carbon capture, utilization, and storage (CCUS) applications. Moreover, refrigerant recovery techniques have been widely developed after the implementation of stringent global regulations on hydrofluorocarbon (HFC) emissions. This study explores the separation of R134a, a well-known HFC, from carbon dioxide (CO2), focusing on the feasibility of hydrate-based processes for the recovery of high-purity CO2. Phase equilibrium measurements, spectroscopic analysis, and process simulation studies were systematically performed to evaluate the operation conditions and energy requirements of the hydrate-based separation processes. Phase equilibrium measurements for R134a + CO2 mixtures at various concentrations were performed along with the structural analysis of mixed hydrates using low-temperature powder X-ray diffraction (PXRD). The experiments demonstrated the preferential occupation of R134a into hydrate cages, enriching CO2 in the vapor phase and achieving target purity levels of 99.0 mol % CO2. The PXRD patterns confirmed the formation of structure II hydrates with a lattice parameter of 17.2 & Aring; with inclusions of R134a in large cages, resulting in a higher exothermic heat of formation compared with that of structure I hydrates. Process simulations were performed to further extend these findings, highlighting the favorable operation conditions and the exothermic nature of hydrate formation, which suggested heat integration into other process units. This study represents a pioneering effort in modeling hydrate-based CO2 recovery processes, providing a significant contribution to the development of sustainable industrial practices and the advancement of CCUS technologies.
引用
收藏
页码:18918 / 18929
页数:12
相关论文
共 50 条
  • [21] Variations of the shrinking core model for effective kinetics modeling of the gas hydrate-based CO2 capture process
    Dashti, Hossein
    Thomas, Daniel
    Amiri, Amirpiran
    Lou, Xia
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1687 - 1692
  • [22] Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage
    Liu, Xuejian
    Ren, Junjie
    Chen, Daoyi
    Yin, Zhenyuan
    CHEMICAL ENGINEERING JOURNAL, 2022, 438
  • [23] Hydrate-Based Mild Separation of Lean-CH4/CO2 Binary Gas at Constant Pressure
    Fan, Shuanshi
    Huang, Hong
    Yu, Chi
    Wang, Yanhong
    Lang, Xuemei
    Wang, Shenglong
    Li, Gang
    Yu, Wangyang
    ENERGY & FUELS, 2021, 35 (17) : 13908 - 13920
  • [24] Influence of Memory Effect on the Growth Kinetics of Thermodynamically Promoted CO2 + H2 Hydrate for Rapid Hydrate-Based Gas Separation
    Ock, Dagyeong
    Kang, Yeonjin
    Lee, Jinwoo
    Kim, Sungwoo
    Mok, Junghoon
    Go, Woojin
    Choi, Wonjung
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [25] Study on the influencing factors of gas consumption in hydrate-based CO2 separation in the presence of CP by Raman analysis
    Xu, Chun-Gang
    Xie, Wen-Jun
    Chen, Guo-Shu
    Yan, Xiao-Xue
    Cai, Jing
    Chen, Zhao-Yang
    Li, Xiao-Sen
    ENERGY, 2020, 198
  • [26] Continuous hydrate-based CO2 separation from H2+CO2 gas mixture using cyclopentane as co-guest
    Misawa, Takuma
    Ishikawa, Tomoaki
    Takeya, Satoshi
    Alavi, Saman
    Ohmura, Ryo
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 121 : 228 - 234
  • [27] Coupling Amino Acid with THF for the Synergistic Promotion of CO2 Hydrate Micro Kinetics: Implication for Hydrate-Based CO2 Sequestration
    Liu, Xuejian
    Li, Yan
    Chen, Guang-Jin
    Chen, Dao-Yi
    Sun, Bo
    Yin, Zhenyuan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (15) : 6057 - 6069
  • [28] Gas Hydrate-Based CO2 Capture: A Journey from Batch to Continuous
    Rehman, Adeel Ur
    Lal, Bhajan
    ENERGIES, 2022, 15 (21)
  • [29] Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture
    Wang, Fei
    Fu, Shanfei
    Guo, Gang
    Jia, Zhen-Zhen
    Luo, Sheng-Jun
    Guo, Rong-Bo
    ENERGY, 2016, 104 : 76 - 84
  • [30] Minireview of Hydrate-Based CO2 Separation from a CO2/CH4 Gas Mixture: Progress and Outlook
    Wu, Liang-Meng
    Li, Xi-Yue
    Xie, Feng-Mei
    Zhong, Dong-Liang
    Englezos, Peter
    Yan, Jin
    ENERGY & FUELS, 2022, 36 (18) : 10478 - 10488