Scattering theory for quadratic nonlinear Schrödinger system in dimension six

被引:0
作者
Gao, Chuanwei [1 ]
Meng, Fanfei [2 ]
Xu, Chengbin [3 ]
Zheng, Jiqiang [4 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Tsinghua Univ, Qiyuan Lab, Beijing 100095, Peoples R China
[3] Qinghai Normal Univ, Sch Math & Stat, Xining 810016, Qinghai, Peoples R China
[4] Natl Key Lab Computat Phys, Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
北京市自然科学基金;
关键词
Energy-critical problem; Quadratic nonlinear Schr & ouml; dinger; system; Blow-up; Scattering; GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATION; GROUND-STATE; NLS;
D O I
10.1016/j.jmaa.2024.128708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the solutions to the energy-critical quadratic nonlinear Schr & ouml;dinger system in H (center dot) 1 x H (center dot) 1 , where the sign of its potential energy can not be determined directly. If the initial data u0 0 is radial or non-radial but satisfies the mass-resonance condition, and its energy is below that of the ground state, using the compactness/rigidity method, we give a complete classification of scattering versus blowing-up dichotomies depending on whether the kinetic energy of u0 0 is below or above that of the ground state. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:42
相关论文
共 42 条
[1]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[2]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics
[3]   Solitons in quadratic media [J].
Colin, M. ;
Di Menza, L. ;
Saut, J. C. .
NONLINEARITY, 2016, 29 (03) :1000-1035
[4]   Stability of solitary waves for a system of nonlinear Schrodinger equations with three wave interaction [J].
Colin, M. ;
Colin, Th. ;
Ohta, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2211-2226
[5]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865
[6]   Blow-up results for systems of nonlinear Schrodinger equations with quadratic interaction [J].
Dinh, Van Duong ;
Forcella, Luigi .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (05)
[7]   A NEW PROOF OF SCATTERING BELOW THE GROUND STATE FOR THE 3D RADIAL FOCUSING CUBIC NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4859-4867
[8]   Threshold solutions for the focusing 3D cubic Schrodinger equation [J].
Duyckaerts, Thomas ;
Roudenko, Svetlana .
REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) :1-56
[9]   Traveling waves for a nonlinear Schrodinger system with quadratic interaction in R4 [J].
Esfahani, Amin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) :12121-12131
[10]   Traveling waves for a nonlinear Schrodinger system with quadratic interaction [J].
Fukaya, Noriyoshi ;
Hayashi, Masayuki ;
Inui, Takahisa .
MATHEMATISCHE ANNALEN, 2024, 388 (02) :1357-1378