MPT-SFANet: Multiorder Pooling Transformer-Based Semantic Feature Aggregation Network for SAR Image Classification

被引:0
作者
Ni, Kang [1 ,2 ,3 ]
Yuan, Chunyang [4 ]
Zheng, Zhizhong [3 ,5 ]
Zhang, Bingbing [6 ]
Wang, Peng [7 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[2] Minist Educ, Nanjing, Peoples R China
[3] Jiangsu Prov Engn Res Ctr Airborne Detecting & In, Nanjing, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Comp Sci & Technol, Nanjing, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Nanjing, Peoples R China
[6] Dalian Minzu Univ, Sch Comp & Engn, Dalian, Peoples R China
[7] Nanjing Univ Aeronaut & Astronaut, Minist Educ, Nanjing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Transformers; Radar polarimetry; Synthetic aperture radar; Semantics; Feature extraction; Telecommunications; Land surface; Feature learning; image classification; semantic feature; synthetic aperture radar (SAR); transformer-based method; COVARIANCE;
D O I
10.1109/TAES.2024.3382622
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The transformer-based methods have demonstrated remarkable advancements in synthetic aperture radar (SAR) classification. Nevertheless, many of these methods ignore global statistical information and semantic feature interaction for effectively characterizing different SAR land covers under complex structures. Leveraging second-order statistics presents an efficacious approach to well characterize the statistical features of SAR patches. Motivated by this, we integrate pyramid pooling and global covariance pooling techniques into each of the multihead self-attention blocks, thereby facilitating the extraction of powerful contextual features and the global statistical nature of SAR patches, namely multiorder pooling transformer module. Simultaneously, a semantic feature aggregation module is utilized for capturing local deep features and modeling the interaction of feature information across various feature levels. Both of these modules are embedded into a U-shaped architecture, which we refer to as a multiorder pooling transformer-based semantic feature aggregation network (MPT-SFANet). Extensive experimental results on TerraSAR, Sentinel-1B, and GF-3 SAR image classification datasets indicate that MPT-SFANet exceeds several relevant methods.
引用
收藏
页码:4923 / 4938
页数:16
相关论文
共 59 条
[11]   Multiscale Vision Transformers [J].
Fan, Haoqi ;
Xiong, Bo ;
Mangalam, Karttikeya ;
Li, Yanghao ;
Yan, Zhicheng ;
Malik, Jitendra ;
Feichtenhofer, Christoph .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6804-6815
[12]   Transfer Learning for SAR Image Classification via Deep Joint Distribution Adaptation Networks [J].
Geng, Jie ;
Deng, Xinyang ;
Ma, Xiaorui ;
Jiang, Wen .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08) :5377-5392
[13]   Covariance of Textural Features: A New Feature Descriptor for SAR Image Classification [J].
Guan, Dongdong ;
Xiang, Deliang ;
Tang, Xiaoan ;
Wang, Li ;
Kuang, Gangyao .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (10) :3932-3942
[14]   Group Bilinear CNNs for Dual-Polarized SAR Ship Classification [J].
He, Jinglu ;
Chang, Wenlong ;
Wang, Fuping ;
Liu, Ying ;
Wang, Yinghua ;
Liu, Hongwei ;
Li, Yinghua ;
Liu, Lei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[15]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916
[16]   Local Window Attention Transformer for Polarimetric SAR Image Classification [J].
Jamali, Ali ;
Roy, Swalpa Kumar ;
Bhattacharya, Avik ;
Ghamisi, Pedram .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
[17]   CFNet: A Cross Fusion Network for Joint Land Cover Classification Using Optical and SAR Images [J].
Kang, Wenchao ;
Xiang, Yuming ;
Wang, Feng ;
You, Hongjian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :1562-1574
[18]   SAR SHIP DETECTION BASED ON SWIN TRANSFORMER AND FEATURE ENHANCEMENT FEATURE PYRAMID NETWORK [J].
Ke, Xiao ;
Zhang, Xiaoling ;
Zhang, Tianwen ;
Shi, Jun ;
Wei, Shunjun .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :2163-2166
[19]  
Kiros J.R., 2016, arXiv
[20]  
Kitaev N., 2020, arXiv, DOI DOI 10.48550/ARXIV.2001.04451