Model Adaptation for Hyperbolic Balance Laws

被引:0
作者
Giesselmann, Jan [1 ]
Joshi, Hrishikesh [1 ]
Mueller, Siegfried [2 ]
Sikstel, Aleksey [3 ]
机构
[1] Tech Univ Darmstadt, Dept Math, Dolivostr 15, D-64293 Darmstadt, Germany
[2] Rhein Westfal TH Aachen, Inst Geometr & Prakt Math, Templergraben 55, D-52056 Aachen, Germany
[3] Univ Cologne, Dept Math, Weyertal 86-90, D-50931 Cologne, Germany
来源
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL II, HYP2022 | 2024年 / 35卷
关键词
Hyperbolic PDE; Balance laws; Stiff source; Model adaptivity; Relative entrophy; Chemically reacting flows; A-POSTERIORI ANALYSIS; DISCONTINUOUS GALERKIN SCHEMES; RELATIVE ENTROPY; SYSTEMS; DISCRETIZATION;
D O I
10.1007/978-3-031-55264-9_7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we devise a model adaptation strategy for a class of model hierarchies consisting of two levels of model complexity. In particular, the fine model consists of a system of hyperbolic balance laws with stiff reaction terms and the coarse model consists of a system of hyperbolic conservation laws. We employ the relative entropy stability framework to obtain an a posteriori modeling error estimator. The efficiency of the model adaptation strategy is demonstrated by conducting simulations for chemically reacting fluid mixtures in one space dimension.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 18 条
[1]   HIGH ORDER SEMI-IMPLICIT WENO SCHEMES FOR ALL-MACH FULL EULER SYSTEM OF GAS DYNAMICS [J].
Boscarino, Sebastiano ;
Qiu, Jingmei ;
Russo, Giovanni ;
Xiong, Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02) :B368-B394
[2]   Continuum thermodynamics of chemically reacting fluid mixtures [J].
Bothe, Dieter ;
Dreyer, Wolfgang .
ACTA MECHANICA, 2015, 226 (06) :1757-1805
[3]  
Chase M., 1998, Am. Inst. Phys.
[4]   The Runge-Kutta discontinuous Galerkin method for conservation laws V - Multidimensional systems [J].
Cockburn, B ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 141 (02) :199-224
[5]  
Dafermos CM, 2010, GRUNDLEHR MATH WISS, V325, P1, DOI 10.1007/978-3-642-04048-1
[6]   A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS [J].
Dedner, Andreas ;
Giesselmann, Jan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (06) :3523-3549
[7]   A Wavelet-Free Approach for Multiresolution-Based Grid Adaptation for Conservation Laws [J].
Gerhard, Nils ;
Mueller, Siegfried ;
Sikstel, Aleksey .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (01) :108-142
[8]   A High-Order Discontinuous Galerkin Discretization with Multiwavelet-Based Grid Adaptation for Compressible Flows [J].
Gerhard, Nils ;
Iacono, Francesca ;
May, Georg ;
Mueller, Siegfried ;
Schaefer, Roland .
JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) :25-52
[9]   A posteriori analysis for dynamic model adaptation in convection-dominated problems [J].
Giesselmann, Jan ;
Pryer, Tristan .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (13) :2381-2423
[10]   A POSTERIORI ANALYSIS OF DISCONTINUOUS GALERKIN SCHEMES FOR SYSTEMS OF HYPERBOLIC CONSERVATION LAWS [J].
Giesselmann, Jan ;
Makridakis, Charalambos ;
Pryer, Tristan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (03) :1280-1303