Coupling advection-dispersion equation and dynamic model for phytoremediation of 134Cs in soil

被引:0
|
作者
Feudjio, D. P. Tsafack [1 ]
Zarma, Ali [2 ]
Tjock-Mbaga, T. [1 ]
Ntahkie, C. Takembo [3 ]
Tsila, P. Mah [1 ]
Ben-Bolie, G. H. [1 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, POB 812, Yaounde, Cameroon
[2] Univ Maroua, Dept Phys, Fac Sci, POB 814, Maroua, Cameroon
[3] Univ Buea, Coll Technol, Dept Elect & Elect Engn, POB 63, Molyko Buea, Cameroon
关键词
Advection-dispersion model; Dynamic model; Phytoremediation; Transfer factor; Effective dose; TO-PLANT TRANSFER; SOLUTE TRANSPORT; DISTRIBUTIONS; WATER; FLOW;
D O I
10.1007/s10967-024-09715-z
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study proposes a model for phytoremediation coupling transport in soil and dynamic model using sunflower plants and Cs-134 radionuclide. The model was validated by comparison with experimental measurements. The error value obtained, ranging from 0.00045-0.5268, is quite small, and the overall simulation data has approached the experiment. Factors influencing radionuclide concentration in different blocks include saturation point values, absorption rates of plant parts, soil dispersion coefficient, and velocity. The model is used to predict doses from ingesting sunflower seeds and estimates the soil-to-plant transfer factor. This new model is recommended for accurate assessment of environmental risks associated with radionuclides and for efficient decontamination.
引用
收藏
页码:5937 / 5947
页数:11
相关论文
共 50 条
  • [31] Development and application of an advection-dispersion model for data analysis of electromigration experiments with intact rock cores
    Meng, Shuo
    Li, Xiaodong
    Siitari-Kauppi, Marja
    Liu, Longcheng
    JOURNAL OF CONTAMINANT HYDROLOGY, 2020, 231
  • [32] ANALYTICAL SOLUTION FOR THE TWO-DIMENSIONAL LINEAR ADVECTION-DISPERSION EQUATION IN POROUS MEDIA VIA THE FOKAS METHOD
    Hwang, Guenbo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (05): : 2334 - 2354
  • [33] Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications
    Zhang, Yong
    Zhou, Dongbao
    Wei, Wei
    Frame, Jonathan M.
    Sun, Hongguang
    Sun, Alexander Y.
    Chen, Xingyuan
    MATHEMATICS, 2021, 9 (07)
  • [34] Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels
    Liu, GS
    Zheng, CM
    Gorelick, SM
    WATER RESOURCES RESEARCH, 2004, 40 (08) : W083081 - W0830819
  • [35] An analytical solution to the one-dimensional solute advection-dispersion equation in multi-layer porous media
    Liu, CX
    Ball, WP
    Ellis, JH
    TRANSPORT IN POROUS MEDIA, 1998, 30 (01) : 25 - 43
  • [36] An analytic solution for the space-time fractional advection-dispersion equation using the optimal homotopy asymptotic method
    Pandey, Ram K.
    Singh, Om P.
    Baranwal, Vipul K.
    Tripathi, Manoj P.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (10) : 2098 - 2106
  • [37] Solution of one-dimensional space- and time-fractional advection-dispersion equation by homotopy perturbation method
    Singh, Mritunjay Kumar
    Chatterjee, Ayan
    ACTA GEOPHYSICA, 2017, 65 (02): : 353 - 361
  • [38] A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model
    Jiang, Wei
    Liu, Na
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 18 - 32
  • [39] Analytical solutions of the one-dimensional advection-dispersion solute transport equation subject to time-dependent boundary conditions
    Perez Guerrero, J. S.
    Pontedeiro, E. M.
    van Genuchten, M. Th
    Skaggs, T. H.
    CHEMICAL ENGINEERING JOURNAL, 2013, 221 : 487 - 491
  • [40] Upscaling solute transport in rough single-fractured media with matrix diffusion using a time fractional advection-dispersion equation
    Lei, Dawei
    Sun, HongGuang
    Zhang, Yong
    Blaszczyk, Tomasz
    Yu, Zhongbo
    JOURNAL OF HYDROLOGY, 2023, 627