The TORCH time-of-flight detector for Upgrade II of the LHCb experiment

被引:0
作者
Blake, T. [9 ]
Cicala, F. [9 ]
Conneely, T. [8 ]
Cussans, D. [1 ]
Davidson, A. [9 ]
Frei, C. [2 ]
Forty, R. [2 ]
Gao, R. [7 ]
Gershon, T. [9 ]
Gys, T. [2 ]
Hadavizadeh, T. [6 ]
Hancock, T. [7 ]
Harnew, N. [7 ]
Jones, T. [9 ]
Korpar, S. [4 ]
Kreps, M. [9 ]
Lappington, J. [5 ]
Lehuraux, M.
Lowe, A. [7 ]
Milnes, J. [8 ]
Pestonik, R. [4 ]
Piedigrossi, D. [2 ]
Polyakov, I. [2 ]
Rademacker, J. [1 ]
Trilov, S. [1 ]
Tat, M. [7 ]
Walton, E. [6 ]
Wilkinson, G. [7 ]
York, A. [7 ]
Zhu, L. [3 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, England
[2] CERN, CH-1211 Meyrin, Switzerland
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Jozef Stefan Inst, Expt Particle Phys Dept, Ljubljana SI-1000, Slovenia
[5] Univ Leicester, Sch Phys & Astron, Leicester LE1 7RH, England
[6] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[7] Univ Oxford, Denys Wilkinson Bldg, Oxford OX1 3RH, England
[8] Photek Ltd, 26 Castleham Rd, St Leonards On Sea TN38 9NS, England
[9] Univ Warwick, Dept Phys, Coventry CV4 7AL, England
关键词
Particle identification; Time-of-flight;
D O I
10.1016/j.nima.2024.169797
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The TORCH (Time Of internally Reflected Cherenkov light) detector is proposed for the high-luminosity Upgrade II of the LHCb experiment. The aim of TORCH is to measure time-of-flight with a 15 ps resolution per charged-particle, providing particle identification over the momentum range 2-15 GeV/c. TORCH is to be located approximately 9.5 m downstream of the LHCb interaction point, and comprises 18 modules of highly-polished 1 cm-thick quartz plates, each of 250x66cm(2). Cherenkov photons, radiated in the quartz, are focused onto an array of fast-timing micro-channel-plate detectors (MCP-PMTs) that each have a pixelation of 8 x 64 within an active area of 5.3x5.3cm(2). Test-beam studies have previously shown that a timing resolution better than 100 ps per single photon can be achieved on a half-height module. Recent advances in the development of a 16 x 96 pixelated MCP-PMT are described. A full-height module is being developed with a light-weight carbon-fibre support structure. A novel exo-skeleton jigging system is used to bond the optical elements and support each module during installation.
引用
收藏
页数:4
相关论文
共 50 条
[41]   BES III Time-of-Flight Readout System [J].
Liu, Shubin ;
Feng, Changqing ;
An, Qi ;
Heng, Yuekun ;
Sun, Shengsen .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (02) :419-427
[42]   Correlation analysis in time-of-flight calibration of BESM [J].
Hu Ji-Feng ;
He Kang-Lin ;
Zhang Zi-Ping ;
Bian Jian-Ming ;
Cao Guo-Fu ;
Deng Zi-Yan ;
He Miao ;
Huang Bin ;
Ji Xiao-Bin ;
Li Gang ;
Li Hai-Bo ;
Li Wei-Dong ;
Liu Chun-Xiu ;
Liu Huai-Min ;
Ma Qiu-Mei ;
Ma Xiang ;
Mao Ya-Jun ;
Mao Ze-Pu ;
Mo Xiao-Hu ;
Qiu Jin-Fa ;
Sun Sheng-Sen ;
Sun Yong-Zhao ;
Wang Ji-Ke ;
Wang Liang-Liang ;
Wen Shuo-Pin ;
Wu Ling-Hui ;
Xie Yu-Guang ;
Yang Ming ;
You Zheng-Yun ;
Yu Guo-Wei ;
Yuan Chang-Zheng ;
Yuan Ye ;
Zang Shi-Lei ;
Zhang Chang-Chun ;
Zhang Jian-Yong ;
Zhang Ling ;
Zhang Xue-Yao ;
Zhang Yao ;
Zheng Zhi-Peng ;
Zhu Yong-Sheng ;
Zou Jia-Heng .
HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2007, 31 (10) :893-899
[43]   Front end electronics for the CDF-II Time-of-Flight system [J].
Chen, C ;
Jones, M ;
Kononenko, W ;
Kroll, J ;
Mayers, GM ;
Newcomer, FM ;
Oldeman, RGC ;
Usynin, D ;
Van Berg, R .
2001 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORDS, VOLS 1-4, 2002, :630-633
[44]   Introduction to Time-of-Flight Imaging [J].
Charbon, Edoardo .
2014 IEEE SENSORS, 2014,
[45]   Doppler Time-of-Flight Imaging [J].
Heide, Felix ;
Heidrich, Wolfgang ;
Hullin, Matthias ;
Wetzstein, Gordon .
ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04)
[46]   TORCH: Time of flight identification with Cherenkov radiation [J].
Charles, M. J. ;
Forty, R. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 639 (01) :173-176
[47]   The CBM time-of-flight wall [J].
Deppner, I. ;
Herrmann, N. ;
Gonzalez-Diaz, D. ;
Ammosov, V. ;
Cheng, J. ;
Ciobanu, M. ;
Gapienko, V. ;
Hildenbrand, K. D. ;
Kiseleva, A. ;
Kis, M. ;
Kresan, D. ;
Kotte, R. ;
Huangshan, C. ;
Leifels, Y. ;
Fruehauf, J. ;
Li, C. ;
Li, Y. ;
Loizeau, P. -A. ;
Naumann, L. ;
Petrovici, M. ;
Petris, M. ;
Semak, A. ;
Simion, V. ;
Stach, D. ;
Sun, Y. ;
Sviridov, Yu. ;
Tang, Z. ;
Usenko, E. ;
Wang, J. ;
Wang, Y. ;
Wisniewski, K. ;
Wuestenfeld, J. ;
Xu, L. ;
Zaets, V. ;
Zhang, Y. ;
Zhu, X. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2012, 661 :S121-S124
[48]   Epipolar Time-of-Flight Imaging [J].
Achar, Supreeth ;
Bartels, Joseph R. ;
Whittaker, William L. ' ReD' ;
Kutulakos, Kiriakos N. ;
Narasimhan, Srinivasa G. .
ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (04)
[49]   The CLAS12 Forward Time-of-Flight system [J].
Carman, D. S. ;
Clark, L. ;
De Vita, R. ;
Fedotov, G. ;
Gothe, R. W. ;
Hollis, G. ;
Miller, B. ;
Phelps, E. ;
Tian, Y. ;
Trivedi, A. ;
Wiggins, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 960
[50]   The CLAS12 Central Time-of-Flight system [J].
Carman, D. S. ;
Asryan, G. ;
Baturin, V ;
Clark, L. ;
De Vita, R. ;
Kim, W. ;
Miller, B. ;
Wiggins, C. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 960