Mechanisms of Lanthanum-mediated mitigation of salt stress in soybean (Glycine max L.)

被引:4
|
作者
Tong, Kaiqing [1 ]
Yan, Lei [1 ]
Riaz, Muhammad [2 ]
Gao, Guang [1 ]
Yu, Hualong [1 ]
Lu, Mu [1 ]
Niu, Yusheng [1 ,3 ]
机构
[1] Qingdao Univ, Inst Biomed Engn, Coll Life Sci, Qingdao, Peoples R China
[2] Zhongkai Univ Agr & Engn, Coll Resources & Environm, Guangzhou, Peoples R China
[3] Qingdao Univ, Sch Tourism & Geog Sci, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
RARE-EARTH-ELEMENTS; SALINITY STRESS; ION HOMEOSTASIS; SOIL-SALINITY; ACID-RAIN; TOLERANCE; SEEDLINGS; GROWTH; PLANTS; CHLOROPLAST;
D O I
10.1111/ppl.14452
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity is considered one of the abiotic stresses that have the greatest impact on soybean production worldwide. Lanthanum (La) is a rare earth element that can reduce adverse conditions on plant growth and productivity. However, the regulatory mechanism of La-mediated plant response to salt stress has been poorly studied, particularly in soybeans. Therefore, our study investigated the mechanisms of La-mediated salt stress alleviation from the perspectives of the antioxidant system, subcellular structure, and metabolomics responses. The results indicated that salt stress altered plant morphology and biomass, resulting in an increase in peroxidation, inhibition of photosynthesis, and damage to leaf structure. Exogenous La application effectively promoted the activity of superoxide dismutase (SOD) and peroxidase (POD), as well as the soluble protein content, while decreasing the Na+ content and Na+/K+ ratio in roots and leaves, and reducing oxidative damage. Moreover, transmission electron microscopy (TEM) demonstrated that La prevented the disintegration of chloroplasts. Fourier-transform infrared spectroscopy (FTIR) analysis further confirmed that La addition mitigated the decline in protein, carbohydrates, and pectin levels in the leaves. Lanthanum decreased the leaf flavonoid content and synthesis by inhibiting the content of key substances in the phenylalanine metabolism pathway during NaCl exposure. Collectively, our research indicates that La reduces cell damage by regulating the antioxidant system and secondary metabolite synthesis, which are important mechanisms for the adaptive response of soybean leaves, thereby improving the salt tolerance of soybeans.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Salinity stress phenotyping for soybean (Glycine max L.) for Middle East Asia
    Khan, Faheema
    LEGUME RESEARCH, 2018, 41 (04) : 551 - 556
  • [22] Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]
    Huang, Lei
    Zeng, Ailan
    Chen, Pengyin
    Wu, Chengjun
    Wang, Dechun
    Wen, Zixiang
    PLANT BREEDING, 2018, 137 (05) : 714 - 720
  • [23] DIFFERENTIAL RESPONSES OF FOUR SOYBEAN (GLYCINE MAX L.) CULTIVARS TO SALINITY STRESS
    Ramana, G. V.
    Padhy, Sweta Padma
    Chaitanya, K. V.
    LEGUME RESEARCH, 2012, 35 (03) : 185 - 193
  • [24] Aluminium stress affects nitrogen fixation and assimilation in soybean (Glycine max L.)
    Departamento de Química Biológica, Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, Argentina
    Plant Growth Regul., 2006, 3 (271-281):
  • [25] Physiological and molecular responses in soybean (Glycine max L.) cultivars to Salinity Stress
    Joshi, Shrushti
    Patil, Suraj
    Srivastava, Ashish Kumar
    Kumar, Vinay
    BIOLOGIA, 2025, 80 (02) : 217 - 231
  • [26] Aluminium Stress Affects Nitrogen Fixation and Assimilation in Soybean (Glycine max L.)
    Karina B. Balestrasse
    Susana M. Gallego
    María L. Tomaro
    Plant Growth Regulation, 2006, 48
  • [27] Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings
    Ning, Lihua
    Kan, Guizhen
    Shao, Hongbo
    Yu, Deyue
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (08) : 2707 - 2719
  • [28] Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress
    Tuncturk, Murat
    Tuncturk, Ruveyde
    Yasar, Fikret
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2008, 7 (11): : 1650 - 1654
  • [29] GROWTH AND PHYSIOLOGICAL CHARACTERISTICS OF SOYBEAN GENOTYPES (Glycine max L.) TOWARD SALINITY STRESS
    Aini, Nurul
    Syekhfani
    Yamika, Wiwin Sumiya Dwi
    Dyah, Runik P.
    Setiawan, Adi
    AGRIVITA, 2014, 36 (03): : 201 - 209
  • [30] Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress
    Weisany, Weria
    Sohrabi, Yousef
    Heidari, Gholamreza
    Siosemardeh, Adel
    Ghassemi-Golezani, Kazem
    AUSTRALIAN JOURNAL OF CROP SCIENCE, 2011, 5 (11) : 1441 - 1447