Effect of the Core-Shell Exchange Coupling on the Approach to Magnetic Saturation in a Ferrimagnetic Nanoparticle

被引:2
|
作者
Komogortsev, Sergey V. [1 ,2 ,3 ]
Stolyar, Sergey V. [3 ]
Mokhov, Alexey A. [3 ]
Fel'k, Vladimir A. [2 ]
Velikanov, Dmitriy A. [1 ]
Iskhakov, Rauf S. [1 ]
机构
[1] RAS, Kirensky Inst Phys, Fed Res Ctr KSC, SB, Krasnoyarsk 660036, Russia
[2] Reshetnev Siberian State Univ Sci & Technol, Sch Space & Informat Technol, Krasnoyarsk 660037, Russia
[3] Russian Acad Sci, Fed Res Ctr Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk 660036, Russia
基金
俄罗斯科学基金会;
关键词
magnetic nanoparticles; magnetization curve; core-shell particle; exchange coupling; LAW; NANOCRYSTALLINE; FERROMAGNETS; ANISOTROPY; BEHAVIOR; PARTICLE;
D O I
10.3390/magnetochemistry10070047
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The generally accepted model of the magnetic structure of an iron oxide core-shell nanoparticle includes a single-domain magnetically ordered core surrounded by a layer with a frozen spin disorder. Due to the exchange coupling between the shell and core, the spin disorder should lead to nonuniform magnetization in the core. Suppression of this inhomogeneity by an external magnetic field causes the nonlinear behavior of the magnetization as a function of the field in the region of the approach to magnetic saturation. The equation proposed to describe this effect is tested using a micromagnetic simulation. Analysis of the approach to magnetic saturation of iron oxide nanoparticles at different temperatures using this equation can be used to estimate the temperature evolution of the core-shell coupling energy and the size of the uniformly magnetized nanoparticle core and the temperature behavior of this size.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Core-shell model of the vacancy concentration and magnetic behavior for antiferromagnetic nanoparticle
    Mandal, Suman
    Banerjee, S.
    Menon, Krishnakumar S. R.
    PHYSICAL REVIEW B, 2009, 80 (21)
  • [22] Preparation and Biomedical Applications of Core-Shell Silica/Magnetic Nanoparticle Composites
    Li, Chuanyan
    Ma, Chao
    Wang, Fang
    Xi, Zhijiang
    Wang, Zhifei
    Deng, Yan
    He, Nongyue
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (04) : 2964 - 2972
  • [23] Strong Coupling in Core-Shell Nanostructure Based on Silicon Nanoparticle and TMDC Monolayer
    Lepeshov, S.
    Krasnok, A.
    Kotov, O.
    Alu, A.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 388 - 388
  • [24] Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell
    Oh, Jong-Gil
    Kim, Hansung
    CURRENT APPLIED PHYSICS, 2013, 13 (01) : 130 - 136
  • [25] Exploring magnetic disorder in inverted core-shell nanoparticles: the role of surface anisotropy and core/shell coupling
    Ccahuana, Damaso
    De Biasi, Emilio
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (05)
  • [26] The magnetic proximity effect in a ferrimagnetic Fe3O4 core/ferrimagnetic γ-Mn2O3 shell nanoparticle system
    Manna, P. K.
    Yusuf, S. M.
    Basu, Mrinmoyee
    Pal, Tarasankar
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (50)
  • [27] Monte Carlo simulation of magnetic properties of a ferrimagnetic nanoisland with hexagonal prismatic core-shell structure
    Wang, Wei
    Peng, Zhou
    Lin, Shan-shan
    Li, Qi
    Lv, Dan
    Yang, Sen
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 113 : 178 - 193
  • [28] Simulation of the Faraday effect for the core-shell magnetic nanowire
    Wang, Wang
    Du, An
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 511
  • [29] Core-Shell Magnetic Nanoparticles
    Lopez-Ortega, Alberto
    NANOMATERIALS, 2023, 13 (05)
  • [30] Core-Shell Magnetic Nanoclusters
    Wang, Jinlan
    Zeng, X. C.
    NANOSCALE MAGNETIC MATERIALS AND APPLICATIONS, 2009, : 35 - +