Effect of the Core-Shell Exchange Coupling on the Approach to Magnetic Saturation in a Ferrimagnetic Nanoparticle

被引:2
|
作者
Komogortsev, Sergey V. [1 ,2 ,3 ]
Stolyar, Sergey V. [3 ]
Mokhov, Alexey A. [3 ]
Fel'k, Vladimir A. [2 ]
Velikanov, Dmitriy A. [1 ]
Iskhakov, Rauf S. [1 ]
机构
[1] RAS, Kirensky Inst Phys, Fed Res Ctr KSC, SB, Krasnoyarsk 660036, Russia
[2] Reshetnev Siberian State Univ Sci & Technol, Sch Space & Informat Technol, Krasnoyarsk 660037, Russia
[3] Russian Acad Sci, Fed Res Ctr Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk 660036, Russia
基金
俄罗斯科学基金会;
关键词
magnetic nanoparticles; magnetization curve; core-shell particle; exchange coupling; LAW; NANOCRYSTALLINE; FERROMAGNETS; ANISOTROPY; BEHAVIOR; PARTICLE;
D O I
10.3390/magnetochemistry10070047
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The generally accepted model of the magnetic structure of an iron oxide core-shell nanoparticle includes a single-domain magnetically ordered core surrounded by a layer with a frozen spin disorder. Due to the exchange coupling between the shell and core, the spin disorder should lead to nonuniform magnetization in the core. Suppression of this inhomogeneity by an external magnetic field causes the nonlinear behavior of the magnetization as a function of the field in the region of the approach to magnetic saturation. The equation proposed to describe this effect is tested using a micromagnetic simulation. Analysis of the approach to magnetic saturation of iron oxide nanoparticles at different temperatures using this equation can be used to estimate the temperature evolution of the core-shell coupling energy and the size of the uniformly magnetized nanoparticle core and the temperature behavior of this size.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Magnetic properties of a hexagonal prismatic nanoparticle with ferrimagnetic core-shell structure
    Jiang, Wei
    Huang, Jian-Qi
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2016, 78 : 115 - 122
  • [2] Magnetocaloric Effect and Magnetic Properties of Core-Shell Ferrimagnetic Spherical Nanoparticle: A Monte Carlo Study
    Zaim, M.
    Zaim, N.
    Omari, L. H.
    Kerouad, M.
    Zaim, A.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (10)
  • [3] Magnetic Proximity Effect Features in Antiferromagnetic/Ferrimagnetic Core-Shell Nanoparticles
    Golosovsky, I. V.
    Salazar-Alvarez, G.
    Lopez-Ortega, A.
    Gonzalez, M. A.
    Sort, J.
    Estrader, M.
    Surinach, S.
    Baro, M. D.
    Nogues, J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [4] Exchange-bias and exchange-spring coupling in magnetic core-shell nanoparticles
    Soares, J. M.
    Galdino, V. B.
    Machado, F. L. A.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 350 : 69 - 72
  • [5] Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure
    Wang, Wei
    Chen, Dong-dong
    Lv, Dan
    Liu, Jin-ping
    Li, Qi
    Peng, Zhou
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 108 : 39 - 51
  • [6] Monte Carlo investigation of a spherical ferrimagnetic core-shell nanoparticle under a time dependent magnetic field
    Vatansever, Erol
    Polat, Hamza
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2013, 343 : 221 - 227
  • [7] A Novel Method for the Synthesis of Core-shell Magnetic Nanoparticle
    Mukherji, D.
    DEFENCE SCIENCE JOURNAL, 2016, 66 (04) : 291 - 306
  • [8] Simulation of the AC susceptibility for a core-shell magnetic nanoparticle
    Cao, Guojia
    Wang, Wang
    Du, An
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 565
  • [9] Magnetic properties of a ferrimagnetic core–shell nanoparticle based on Monte Carlo method
    Wei Wang
    Zhen-yu Liu
    Xing-guo Wang
    Sheng Zou
    Dan Lv
    Applied Physics A, 2025, 131 (5)
  • [10] Magnetic Behavior of Spin Chain with Hexagonal Shell and Negative Core-Shell Exchange Coupling: Monte Carlo Simulation and Mean Field Approach
    Jalal, E. M.
    Lafhal, A.
    Saadi, H.
    Hasnaoui, A.
    Madani, M.
    El Bouziani, M.
    SPIN, 2023, 13 (02)