GCN-MHSA: A novel malicious traffic detection method based on graph convolutional neural network and multi-head self-attention mechanism

被引:1
|
作者
Chen, Jinfu [1 ,2 ]
Xie, Haodi [1 ,2 ]
Cai, Saihua [1 ,2 ]
Song, Luo [1 ,2 ]
Geng, Bo [1 ,2 ]
Guo, Wuhao [3 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Jiangsu Key Lab Secur Technol Ind Cyberspace, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Asiainfo Secur Technol Co Ltd, Nanjing 210012, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Malicious traffic detection; Graph convolutional neural network; Multi-head self-attention mechanism; Feature extending;
D O I
10.1016/j.cose.2024.104083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing size and complexity of network, network traffic becomes more and more correlated with each other, and the traditional manner of presenting network traffic in a Euclidean structure is difficult to effectively capture the correlation information of network traffic. In contrast, graph structured data has gained much attention in recent years due to its ability to represent the correlation between different traffic flows; In addition, models and algorithms related to Graph Convolution Neural network (GCN) have been used for malicious traffic detection. However, existing GCN-based malicious traffic detection methods still suffer from incomplete description of the flow-level features of network traffic, imperfect traffic correlation establishment mechanism and failure to distinguish the importance of features during model training. Based on this, this study proposes a malicious traffic detection method called GCN-MHSA based on Graph Convolutional Neural network and Multi-Head Self-Attention mechanism. Firstly, the flow-level features of network traffic are populated and more information close to the features are selected to describe the network traffic; And then, the link homogeneity is used to establish the correlations between network traffic; Moreover, multi-head self-attention mechanism is introduced in the GCN model to provide larger weight to important features; Finally, an improved GCN is used as a deep learning model to detect malicious traffic. Extensive experimental results on three publicly available network traffic datasets and a real network traffic dataset show that the proposed GCN-MHSA method performs better than five baselines in terms of detection effect and stability, with an improvement of about 2.4% in accuracy, recall and F1-measure as well as an improvement of about 2.1% in precision.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A malicious network traffic detection model based on bidirectional temporal convolutional network with multi-head self-attention mechanism
    Cai, Saihua
    Xu, Han
    Liu, Mingjie
    Chen, Zhilin
    Zhang, Guofeng
    COMPUTERS & SECURITY, 2024, 136
  • [2] TLS-MHSA: An Efficient Detection Model for Encrypted Malicious Traffic based on Multi-Head Self-Attention Mechanism
    Chen, Jinfu
    Song, Luo
    Cai, Saihua
    Xie, Haodi
    Yin, Shang
    Ahmad, Bilal
    ACM TRANSACTIONS ON PRIVACY AND SECURITY, 2023, 26 (04)
  • [3] Detection of malicious URLs using Temporal Convolutional Network and Multi-Head Self-Attention mechanism
    Nguyet Quang Do
    Selamat, Ali
    Krejcar, Ondrej
    Fujita, Hamido
    APPLIED SOFT COMPUTING, 2025, 169
  • [4] MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting
    Cao, Yang
    Liu, Detian
    Yin, Qizheng
    Xue, Fei
    Tang, Hengliang
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [5] A novel intelligent fault diagnosis method of bearing based on multi-head self-attention convolutional neural network
    Ren, Hang
    Liu, Shaogang
    Qiu, Bo
    Guo, Hong
    Zhao, Dan
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2024, 38
  • [6] CNN-MHSA: A Convolutional Neural Network and multi-head self-attention combined approach for detecting phishing websites
    Xiao, Xi
    Zhang, Dianyan
    Hu, Guangwu
    Jiang, Yong
    Xia, Shutao
    NEURAL NETWORKS, 2020, 125 : 303 - 312
  • [7] Joint extraction of entities and relations based on character graph convolutional network and Multi-Head Self-Attention Mechanism
    Meng, Zhao
    Tian, Shengwei
    Yu, Long
    Lv, Yalong
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2021, 33 (02) : 349 - 362
  • [8] Epilepsy detection based on multi-head self-attention mechanism
    Ru, Yandong
    An, Gaoyang
    Wei, Zheng
    Chen, Hongming
    PLOS ONE, 2024, 19 (06):
  • [9] Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
    Oluwasanmi, Ariyo
    Aftab, Muhammad Umar
    Qin, Zhiguang
    Sarfraz, Muhammad Shahzad
    Yu, Yang
    Rauf, Hafiz Tayyab
    SENSORS, 2023, 23 (08)
  • [10] Speech enhancement method based on the multi-head self-attention mechanism
    Chang X.
    Zhang Y.
    Yang L.
    Kou J.
    Wang X.
    Xu D.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2020, 47 (01): : 104 - 110