SpectralGPT: Spectral Remote Sensing Foundation Model

被引:386
作者
Hong, Danfeng [1 ,2 ]
Zhang, Bing [1 ,3 ]
Li, Xuyang [2 ,3 ]
Li, Yuxuan [2 ,4 ]
Li, Chenyu [4 ,5 ]
Yao, Jing [6 ]
Yokoya, Naoto [7 ]
Li, Hao [8 ]
Ghamisi, Pedram [8 ,9 ]
Jia, Xiuping [10 ]
Plaza, Antonio [11 ]
Gamba, Paolo [12 ]
Benediktsson, Jon Atli [13 ]
Chanussot, Jocelyn
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 210096, Peoples R China
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 2778561, Peoples R China
[6] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 85521, Peoples R China
[7] Univ Tokyo, Grad Sch Frontier Sci, Chiba 09599, Japan
[8] Tech Univ Munich, D-10003 Munich, Germany
[9] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zent Dresden Rossendorf, D-2612 Freiberg, Germany
[10] Univ New South Wales, Sch Engn & Informat Technol, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Canberra 10003, Australia
[11] Univ Extremadura, Escuela Polit, Caceres 10003, Spain
[12] Univ Pavia, Dept Elect Comp & Biomed Engn, I-102 Pavia, Italy
[13] Univ Iceland, Fac Elect & Comp Engn, CNRS, Grenoble INP,LJK, IS-38000 Reykjavik, Iceland
基金
中国国家自然科学基金;
关键词
Artificial intelligence; deep learning; downstream; foundation model; progressive; remote sensing; spectral data; tensor masked modeling; transformer; BENCHMARK;
D O I
10.1109/TPAMI.2024.3362475
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT). Compared to existing foundation models, SpectralGPT 1) accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS Big Data; 2) leverages 3D token generation for spatial-spectral coupling; 3) captures spectrally sequential patterns via multi-target reconstruction; and 4) trains on one million spectral RS images, yielding models with over 600 million parameters. Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS Big Data applications within the field of geoscience across four downstream tasks: single/multi-label scene classification, semantic segmentation, and change detection.
引用
收藏
页码:5227 / 5244
页数:18
相关论文
共 41 条
[1]  
Bao L., 2022, P ICLR
[2]  
Bommasani R., 2021, arXiv, DOI [10.48550/arXiv.2108.07258, DOI 10.48550/ARXIV.2108.07258]
[3]  
Caron M, 2020, ADV NEUR IN, V33
[4]  
Chen T., 2020, NeurIPS 2020, P22243, DOI 10.48550/arXiv.2006.10029
[5]  
Chen T., 2020, INT C MACHINE LEARNI, P1597
[6]  
Chen XL, 2020, Arxiv, DOI arXiv:2003.04297
[7]   Exploring Simple Siamese Representation Learning [J].
Chen, Xinlei ;
He, Kaiming .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15745-15753
[8]   Functional Map of the World [J].
Christie, Gordon ;
Fendley, Neil ;
Wilson, James ;
Mukherjee, Ryan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6172-6180
[9]  
Cong YZ, 2022, ADV NEUR IN
[10]  
Daudt RC, 2018, INT GEOSCI REMOTE SE, P2115, DOI 10.1109/IGARSS.2018.8518015