Wireless Microwave-to-Optical Conversion on Thin-Film Lithium Niobate

被引:1
作者
Juneghani, Farzaneh A. [1 ]
Vazimali, Milad G. [1 ]
Lee, Kim F. [2 ]
Velazquez, Ectis [3 ]
Gong, Xun
Kanter, Gregory S. [2 ]
Fathpour, Sasan [1 ]
机构
[1] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando 32816, FL USA
[2] NuCrypt LLC, Park Ridge, IL 60068 USA
[3] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Bow-tie antenna; electro-optics converters; patch antenna; thin-film lithium niobate; ELECTRIC-FIELD SENSOR; PHASE MODULATOR; ANTENNA;
D O I
10.1109/JLT.2024.3397573
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Microwave-to-optical converters (MOCs) are critical components for building a bridge between photonic and radio-frequency (RF) engineering. High bandwidth and sensitivity, immunity to noise, and compactness are some of the requirements of MOCs. Integrated MOCs that incorporate RF antennas and optical waveguides on the same chip can address these requirements. In this work, integrated MOCs are demonstrated on thin-film lithium niobate (TFLN). Two antenna types (patch and bow-tie) are designed at a resonant frequency of 28 GHz on silicon substrates. The antennas are seamlessly integrated with single-mode TFLN optical waveguides, operating at a nominal wavelength of 1550 nm. Experimental results demonstrate that the TFLN MOCs employing patch and bow-tie antennas yield figures of merit (FOM) of 0.7 W-(1/2) and 0.25 W-(1/2) , respectively, corresponding to field enhancement (FE) factors of 590 and 487. The MOC based on bow-tie antennas shows a wider 3-dB bandwidth of 5 GHz, which is 2 GHz broader than its patch antenna counterpart. Furthermore, We predict the FOM can be improved to a value of 1.46 W-(1/2) for MOCs fabricated on quartz substrates.
引用
收藏
页码:5583 / 5590
页数:8
相关论文
共 36 条
[1]   Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate [J].
Abdelsalam, Kamal ;
Ordouie, Ehsan ;
Vazimali, Milad G. ;
Juneghani, Farzaneh A. ;
Kumar, Prem ;
Kanter, Gregory S. ;
Fathpour, Sasan .
OPTICS LETTERS, 2021, 46 (11) :2730-2733
[2]  
Balanis C. A., 2016, Antenna theory: analysis and design
[3]  
Carrel R.L., 1958, IRE T ANTENNAS PROPA, VAP-6, P197
[4]   MICROSTRIP ANTENNA TECHNOLOGY [J].
CARVER, KR ;
MINK, JW .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1981, 29 (01) :2-24
[5]   EXTENDED ANALYSIS OF RECTANGULAR MICROSTRIP RESONATOR ANTENNAS [J].
DERNERYD, AG ;
LIND, AG .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1979, 27 (06) :846-849
[6]   Silica/Electro-Optic Polymer Optical Modulator With Integrated Antenna for Microwave Receiving [J].
Herrera, Oscar D. ;
Kim, Kyung-Jo ;
Voorakaranam, Ram ;
Himmelhuber, Roland ;
Wang, Shiyi ;
Demir, Veysi ;
Zhan, Qiwen ;
Li, Li ;
Norwood, Robert A. ;
Nelson, Robert L. ;
Luo, Jingdong ;
Jen, Alex K. -Y. ;
Peyghambarian, Nasser .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2014, 32 (20) :3861-3867
[7]   Rejuvenating a Versatile Photonic Material: Thin-Film Lithium Niobate [J].
Honardoost, Amirmahdi ;
Abdelsalam, Kamal ;
Fathpour, Sasan .
LASER & PHOTONICS REVIEWS, 2020, 14 (09)
[8]   High-Speed Modeling of Ultracompact Electrooptic Modulators [J].
Honardoost, Amirmahdi ;
Safian, Reza ;
Rao, Ashutosh ;
Fathpour, Sasan .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (24) :5893-5902
[9]  
Juneghani F. A., 2022, P IEEE INT TOP M MIC, P1
[10]   Integrated Electro-Optical Sensors for Microwave Photonic Applications on Thin-Film Lithium Niobate [J].
Juneghani, Farzaneh A. ;
Vazimali, Milad G. ;
Kanter, Gregory S. ;
Fathpour, Sasan .
2021 INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP), 2021,